

Technical Sheet

大阪府立産業技術総合研究所

No. 00024

超音波探查映像装置

機器紹介

キーワード:非破壊検査、超音波、欠陥、探傷

概要

超音波探査映像装置は、超音波を物体内に伝 播させ、物体内からの反射波を計測することに より、物体の表面下に存在する欠陥の形状、寸 法および位置を非破壊で調べることができる装 置です。また、表層を伝播する表面波が励起で きる場合には、その音速を計測することによ り、表層の密度や剛性に関する情報を得ること も可能です。ここでは、探傷への利用例に限定 し、測定例を交えて測定原理と本装置の性能に ついて解説します。

超音波探傷法

図1 に超音波探査映像装置(日立建機 HSAM210)の外観図を示します。装置の主要部 は、水槽、超音波トランスデューサー、三軸ス キャナーからなります。

図2に装置主要部の模式図を示します。測定 対象物を水槽内に入れ、液体(通常は水)を満 たします。トランスデューサーから放射された 超音波は、液体を介して試料に入射します。超 音波の伝播経路内に欠陥や接合面などの音響的 な不連続面がある場合には、これによる反射が 起こります。この反射波を前述のトランス デューサーで受信します。反射波が現れるまで の時間は、不連続面の表面からの深さを反映 し、反射波の強度と位相は、不連続面を構成す

図1 超音波探查映像装置外観

る2つの物質の物性差(密度と音速の積の差)を 反映します。さらに、トランスデューサーをxy 平面内で走査することにより、これら諸量の 面内分布を知ることができます。

なお、液体中で測定を行う手法を水浸法と呼 びます。この液体はカップラントと呼ばれ、ト ランスデューサーから試料に効率的に超音波を 送るため、また、試料表面の凹凸の影響を軽減 させる目的で用いられます。本装置では、基本 的に水浸法しか利用できませんので、試料は液 中に浸しても支障のないものである必要があり ます。加えて、水槽の寸法(約350mm × 350mm × 60mm)より小さくなくてはなりません。

分解能および観察可能な深さ

分解能ならびに観察可能な深さは、ともに、 トランスデューサーの性能に強く依存します。 表1に、当研究所が有するトランスデューサー の性能一覧を示します。また、図3に、超音波 が収束する様子を表す模式図を示します。ここ で、表1に挙げた焦点距離f、ビーム径Dwは、図 3aに示した各寸法に対応します。x-y面内での 分解能はビーム径Dw程度となります。なお、表 1の数値はすべて水中での値であり、材料内で は若干異なる値になりますので、あくまで目安 として参照して下さい。

図2 超音波探査映像装置の模式図

表1に示したとおり、超音波の周波数が高い ほど分解能は高くなるとともに、焦点距離は短 くなります。したがって、高分解能測定ができ るのはごく表層に限られます。なお、図3bに示 すように、試料内部に焦点を下げると、境界面 で両媒質の音速の差異に起因した屈折が起こる ため、焦点距離が実質的に短くなることから (f >f ')、観察できる深さは水中での焦点距離 より小さくなります。屈折の程度はおおむね両 媒質の音速比で生じ、例えば水(縦波音速約 1500m/s)から鉄鋼(同約6000m/s)に入射する 場合、焦点距離は水中でのそれの1/4になりま す。また、伝播にともなう超音波の減衰は周波 数が高いほど大きいため、減衰が強く現れる材 料(例えば鋳物や軟質プラスチックなど)では、 一般に、高周波の超音波を用いた測定は困難で す。

表1 所有トランスデューサーのスペック

周波数	焦点距離(水中)	ビーム径
(MHz)	f (mm)	$\Delta w (\mu m)$
10	25	560
25	10	130
50	12	80
100	1.7	6
200	1.2	6

測定例

図4aに、ある種のセラミックスの表面に超音 波焦点を合わせたときの超音波像を示します。 像内の各部位における輝度は、その部位の反射 エコーの強度に比例しています。図によると、 視野の中心付近から下方に向けて伸びるクラッ クが認められます。目視による観察結果もこれ と同様でした。

図4bに、同一視野のまま焦点を試料内部に下 げた時の超音波像を示します。表面焦点あるい は光学的な観察結果とは異なり、視野の上方に 伸びるラインが認められます。これは表面下に 存在するクラックである可能性が高いと考えら れます。

このように、超音波探査映像装置では、光学 的には観察することができない不透明な材料に 対しても、非破壊で内部を観察することがで き、トラブル解析や品質向上を図るツールとし て威力を発揮します。

図 4a セラミックス表面像 f=100MHz

図 4b 内部焦点像 f=100MHz

評価技術部 材料評価グループ 小栗 泰造 Phone:0725-51-2707 作成者 2001年 3月 5日 発行日