

Technical Sheet

No. 22-06

XPS 測定による低誘電損失樹脂の表面改質評価

キーワード:表面分析、×線光電子分光、低誘電損失樹脂

はじめに

樹脂表面での異種材料の接着は包装材料や 光学・電子材料等において重要な技術です。特 に近年、5G関連技術において回路基板材料と して用いる低誘電損失樹脂と金属を接着する 技術が求められています。具体的には、従来用 いられてきた粗面化界面でのアンカー(投錨) 効果には依存しない新たな接着機構が必要と されており、樹脂の表面改質技術が注目されて います。とりわけ、樹脂表面の状態についての 情報を得ることは重要であり、化学状態分析が 可能なX線光電子分光(XPS)測定は有効な手段 の一つです。XPS は、X 線励起により最表面か ら 10 nm 程度の深さで発生する光電子により元 素に固有の光電子スペクトルを得る表面分析 法で、光電子ピークの結合エネルギーから定性 分析と状態分析が、ピーク面積から半定量分析 が可能です。我々のグループでは、これまでに プラズマ表面改質によるフッ素樹脂と銅の直 接接着技術の開発に取り組んできています 1。 本稿では、XPS 測定を用いた低誘電損失樹脂の 表面改質に関する評価事例と測定における注 意点を紹介します^{*}。

測定と解析

絶縁物の帯電中和

低誘電損失樹脂であるフッ素樹脂(四ふっ化 エチレン - 六ふっ化プロピレン共重合(FEP)樹 脂、図 1)の XPS 測定事例を紹介します。FEP の ような絶縁物に X 線を照射すると光電子の発 生に伴う試料内部での電荷蓄積によって帯電 し、スペクトル形状が著しく変化して正しい情 報が得られなくなります。その対策の一つとし

図 1. FEP の化学構造式

て、低速電子線照射による帯電中和を行った測 定事例を紹介します。図2に帯電中和の有無に よる FEP 樹脂の XPS ワイドスペクトルの比較 を示します。全エネルギー範囲を取得するワイ ドスペクトルでは、試料表面に存在する元素の 種類と各元素のおおよその組成比を知ること ができます。帯電中和を行わなかった場合は、 スペクトル形状が大きく変化し、フッ素(F)と炭 素(C)の光電子ピークは確認できませんでした。 一方、適切に帯電中和を行った場合は、FEP 由 来の F と C の明瞭なピークが確認されました。

図 2. 帯電中和の有無による FEP 樹脂の XPS ワイドスペクトルへの影響

樹脂表面の化学状態分析

図3にAr+H2ガス雰囲気下で低圧プラズマ表 面改質処理をしたFEP樹脂のXPSワイドスペ クトルを示します。処理前後のワイドスペクト ルを比較すると、改質処理によりO1sピークが 新たに出現していることが確認されました。表 1に、プラズマ処理前後のXPS測定から求めた 元素組成を示します。処理前はF/Cが2.1とFEP の化学組成であるF/C=2に近い値であったの に対し、処理後はCとOの組成比に著しい増加 が確認されました。

*本稿で紹介する XPS 測定は AXIS-ULTRA DLD(Kratos Analytical/島津製作所製), X線源:単 色化 Al-Kαを用いて行いました。

〒536-8553 大阪市城東区森之宮1丁目6番50号 - Phone: 06-6963-8181(技術相談専用電話)

地方独立行政法人 大阪産業技術研究所 森之宮センター https://orist.jp/

図 3. プラズマ処理前後における FEP 樹脂 の XPS ワイドスペクトル

表 1. プラズマ処理前後における FEP 樹脂の元素組成(at%)と F/C 組成比

	С	O F		F/C		
処理前	32	0	68	2.1		
処理後	61	5	34	0.56		

また図 4 に C 1s のナロースペクトルを示し ます。ナロースペクトルでは、元素固有の光電 子スペクトルが短時間に高分解能で取得でき、 より詳細な元素の化学状態を把握することが 可能です。処理前は FEP の化学結合由来のピー クのみが確認されたのに対し(図4左)、処理後 は285-290 eV にブロードなピークが出現しまし た(図4右)。XPS 測定では、原子の価数や化学 状態の変化によりピーク位置に変化が生じま す。図4右に示すClsスペクトルの285-290eV 付近のピークは、一般にカルボキシル基やケト ン基、ヒドロキシ基などに帰属されます。また、 試料中の酸素の組成比が増加していることか ら(表1)、プラズマ処理により FEP 樹脂表面 に親水性の官能基が導入されたことが示唆さ れます。実際に、プラズマ処理前後の FEP 樹脂 に対する水滴接触角は 115 度から 75 度へと変 化しており、親水性の向上が確認されました。 このように XPS 測定と他の測定を組み合わせ ることで表面現象に対する多角的な考察が可 能になります。

樹脂の深さ方向分析における注意点

金属板などの XPS 測定においては Ar イオン (Ar⁺)エッチングによる深さ方向分析が可能で すが、高分子材料に対しては試料損傷が生じま す。図5にAr⁺エッチング前後における FEP 樹 脂のC1s スペクトルを示します。エッチング後 では286-290 eV の低エネルギー側のスペクトル

図 4. 低圧プラズマ処理前(左)と処理後(右) における FEP 樹脂の XPS C 1s ナロースペ クトル(挿入図は処理前後における樹脂の 水滴接触角を示す)

形状に変化が見られ、化学状態が変化している ことが伺えます。このように、高分子材料の深 さ方向分析を行う場合は試料損傷への注意が 必要です。その対策として、近年では試料損傷 の少ない Ar ガスクラスターイオンビームを使 用したエッチング法による深さ方向分析が提 案されています。

図 5. Ar⁺エッチング前後における FEP 樹脂 の XPS C 1s ナロースペクトル

おわりに

当研究所では、XPS 測定装置による固体試料 の測定が可能です。また、表面工学研究室では、 プラズマや真空紫外光を用いた樹脂材料の表 面改質などの研究も行っております。高分子材 料の表面分析、めっき膜・金属材料の元素分析 や表面処理・表面物性に関する分析など、お気 軽にご相談下さい。

参考文献

1 小林,池田, *表面技術*, **72**, 333-339(2021).

	発行日	2022年4月1日							
	作成者	電子材料研究部	表面工学研究室	中谷	真大、	池田	慎吾、	小林	靖之
1	Phone:	06-6963-8093	E-mail: nakay	a@ori	st.jp				