Technical Sheet

電析法による固体高分子形燃料電池用微粒子触媒の作製

キーワード:固体高分子形燃料電池、電析、触媒、白金合金微粒子

はじめに

燃料電池は、CO,などの有害な物質を排出せ ず、エネルギー効率にも優れているため、環 境問題やエネルギー問題を解決するものとし て、注目されています。中でも、軽量化が可 能で低温で動作する固体高分子形燃料電池は、 次世代の家庭用電源や自動車の電源として開 発が進められています。現在、固体高分子形 燃料電池の触媒として白金微粒子が使用され ていますが、白金は希少で、かつ高価である ため、使用量の大幅な低減が求められていま す。白金の使用量を抑える方法として、白金 合金の利用が挙げられ、これまでにも、白金 合金触媒に関する研究が数多く行われていま す。白金合金触媒においても触媒効果を上げ るため微粒子とする必要がありますが、現在 主流の作製方法では反応の制御が困難で、ま た、作製した合金微粒子の耐食性・耐久性も 十分満足できるものは得られていません。

当研究所では、安価で容易な電析技術(ダ ブルポテンシャルステップ法)を用いて、耐 食性の優れた白金合金微粒子触媒を作製し、 固体高分子形燃料電池の電極触媒への適用を 検討しています。ここでは、その作製方法お よび特性の一部を紹介いたします。

微粒子作製方法の比較

白金合金微粒子の作製方法として、一般的

には金属酸化物コロイドを水素ガスで気相還 元する方法や、金属錯体をホルムアルデヒド などの薬品で液相還元する方法などが用いら れています。これらの方法では、高分散で粒 径の比較的そろった微粒子が得られますが、 制御には高度な技術が必要となります。また、 金属酸化物や錯体を還元するために水素ガス や薬品が必要となり、製造の管理が難しく、 コストも高くなります。一方、電析法では、 金属塩の還元に電源を用いるので、特殊な装 置が不要で管理がたやすく、コストも低く抑 えられます。また、比較的簡単にできるため 大量生産に適した方法といえます。

ダブルポテンシャルステップ法

ダブルポテンシャルステップ法とは、電析 (めっき)法で用いられる技術で、2種類の 電位を電極に印加する方法です。本実験では、 2種類の電位を、合金微粒子の析出電位(1st step)と合金金属(白金以外の金属)の溶解 電位(2nd step)に設定して合金微粒子を作 製しました。図1にダブルポテンシャルステ ップの電位変化および、それぞれの電位での 電極付近の様子の模式図を示します。1st stepでは、まず電極上に合金微粒子が析出し、 その後、2nd stepで、表面付近の合金金属の みを溶解させます。そのため、微粒子の表面 付近は、白金リッチな層となり、いわゆるコ

地方独立行政法人 大阪産業技術研究所 本部・和泉センター http://orist.jp/ 〒594-1157 和泉市あゆみ野2丁目7番1号 Phone: 0725-51-2525(総合受付) ア・シェル型の合金微粒子ができます。構造が コア・シェル型となると、外側(シェル部)の 白金層により内部(コア部)の合金金属の溶 解が抑えられ、耐食性の優れた合金微粒子が 得られます。

白金合金微粒子の作製例(PtNi 合金微粒子)

表1にPtNi合金微粒子の作製条件を示し ます。溶液にはワット浴に、少量の塩化白金 酸を添加したものを使用しています。図2に ダブルポテンシャルステップ法(1サイクル) で作製したPtNi合金微粒子のTEM像を示し ます。おおよそ 5nm の微粒子が確認できま した。粒径は、ダブルポテンシャルステップ のサイクルを繰り返すことで大きくすること が可能で、2サイクルで約14nm、4サイクル で約48nm、10サイクルで約74nmの微粒子 が得られます。また、微粒子の表面の組成比 は、ダブルポテンシャルステップの電位、お よび溶液中の塩化白金酸の濃度により制御す ることが可能で、Niの割合が0~40%(原子 比)の合金微粒子の作製が可能です。

PtNi 合金微粒子の特性

ダブルポテンシャルステップ法で作製した PtNi 合金微粒子について、酸素還元特性を調 べました(図 3)。酸素還元に伴う電流の立ち 上がりが、PtNi 微粒子では、Pt 微粒子に比 べて貴にシフトしました。つまり、PtNi 合金 微粒子は、Pt 微粒子に比べて酸素還元能が優 れていることを示しています。また、劣化試 験(電位サイクル試験)を行った後に同様に 測定した場合でも、Pt 微粒子の特性より優れ ており、耐久性の面でも優れた合金微粒子で あることがわかりました。

おわりに

現在、固体高分子形燃料電池は、実用段階 まで開発が進んでいます。しかし、広く一般 に普及するためには、コストや信頼性の点で、 まだ課題が残されており、今後も、更なる研 究開発が必要とされます。当研究所において も、燃料電池の評価装置を導入し、燃料電池 開発の支援を行っております。本テクニカル シートの触媒作製技術および評価装置に関し てご興味のある方は、是非ご相談ください。

表1 PtNi 合金微粒子作製に用いた液組成(例)

薬品	濃度					
硫酸ニッケル	0.91 M					
塩化ニッケル	0.19 M					
ホワ酸	0.49 M					
塩化白金酸	$2.5 \times 10^{-3} \text{ M}$					

図 2 ダブルポテンシャルステップ法で
作製した PtNi 合金微粒子の TEM 像
(試料は1サイクルで作製した)

 図3 PtNi 合金微粒子の酸素還元特性 (試料は 10 サイクルで作製した)
溶液: 0.1M 硫酸(酸素飽和、30℃)
回転電極を用いて測定した

- 5								 	
	発行日	2009年8月13日	(改訂日	201	8年7	月1日))		
	作成者	金属表面処理研究部	表面化学研	究室	西村	崇			
	Phone:	0725-51-2722							
- L								 	