受験職種 研究職 (機械)

得 点 ※

地方独立行政法人大阪府立産業技術総合研究所 研究職 (機械) 専門試験

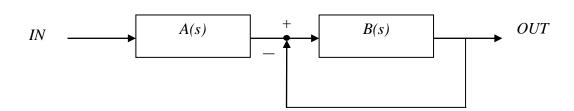
(注 意 事 項)

- 1. 試験時間中は、すべて試験係員の指示に従ってください。お互いに話をしたり、席を立ったり、そのほか、 人の迷惑になるようなことをしてはいけません。<u>指示に従わない、また、試験中にICレコーダーや携帯</u> 電話等を使用するなどの不正行為を行った場合は、失格として直ちに退室していただきます。
- 2. 受験番号及び氏名は必ず記入してください。(※欄は記入しないでください。)
- 3. 問題は、全部で7問あります。解答時間は、計2時間20分です。
- 4. 棄権するとき、気分が悪くなったときを除き、途中退室はできません。棄権するときには、試験用紙を必ず試験係員に提出し、確認を受けてください。<u>こちらから渡したものは、一切持って退出してはいけません。</u>
- 5. 気分が悪くなった方は、試験係員に申し出て、指示に従ってください。

指示があるまで中をあけてはいけません

	整理番号
*	

整理番号		*
*	得 点	


 受験職種
 受験番号

 研究職(機械)

氏 名

問題1 次の問い(1)から(5)について、それぞれの答えを解答欄に記入しなさい。

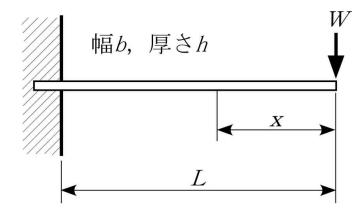
- (1) ベクトルA, B の成分をそれぞれ (-2,5,8)、(6,10,-3) とするとき、 $A \ \ \, b \ \, o$ のスカラー積(内積)の値およびベクトル積(外積)の成分を求めなさい。なお、計算過程も記入しなさい。
- (2) 行列 $C = \begin{pmatrix} 2 & 3 \\ -1 & 6 \end{pmatrix}$ の固有値を求めなさい。なお、計算過程も記入しなさい。
- (3) $\sin 15^\circ$ の値を $\sqrt{2}=1.414$ 、 $\sqrt{6}=2.449$ として求めなさい。答えは、小数点以下第四位を四捨五入し小数点以下第三位までを 求め、計算過程も記入しなさい。
- (4) 10 進数の 143 を 2 進数で表しなさい。
- (5) 次のフィードバック制御を行っているシステム全体の伝達関数をH(s)とすると、H(s)は(ア)から(オ)のどれになるかを 選び、その記号を解答欄に記入しなさい。

- $(7) \quad H(s) = A(s) + \frac{B(s)}{1 B(s)} \qquad (4) \quad H(s) = A(s) + \frac{B(s)}{1 + B(s)} \qquad (5) \quad H(s) = \frac{A(s)B(s)}{1 B(s)}$

- $(\bot) \quad H(s) = \frac{A(s)B(s)}{1 + B(s)}$
- $(\not\exists) \quad H(s) = A(s) + \frac{B(s)}{1 A(s)}$

問題1 解答欄

	(計算過程)
(1)	
	(/t/t)
	(答え)
	(計算過程)
(2)	
	(答え)
	(計算過程)
(3)	
(3)	
	(答え)
(4)	(答え)
(5)	(答え)


問題 2 図のように、自由端に集中荷重 Wを受ける長さ Lの矩形断面(幅 b、厚さ h)の片持ちばりがあるとき、どこの断面でも最大曲げ応力 σ が一定の値になるような一様強さのはりにするには、幅 b、厚さ h をどのように変化させればよいか。

次の二つの場合について求めなさい。計算過程も記入しなさい。

ただし、矩形断面の断面係数Zは、

$$Z = \frac{1}{6}bh^2$$

で与えられる。

(1) 厚さhを一定にして幅bのみを変化させる場合、固定端の幅 b_0 をW、L、h、 σ を用いて表しなさい。 また、幅bを自由端からの距離xの関数として、 b_0 、Lを用いて表しなさい。

(2) 幅 bを一定にして厚さ hのみを変化させる場合、固定端の厚さ h_0 を W、L、b、 σ を用いて表しなさい。 また、厚さ hを自由端からの距離 xの関数として、 h_0 、Lを用いて表しなさい。

問題2 解答欄

	(計算過程)	
(1)		
	(答) $b_0=$	b =
	(計算過程)	
(2)		
	(答) $h_0 =$	h =

問題3 次の(1)から(10)には機械図面で使用される寸法・幾何公差等に関する記号・数値(JISB0001:2010、JISB0401-1:1998、 JISB0021:1998、JISB0031:2003、JISB0621:1984に準拠するものとする)を示す。例にならってそれぞれの意味を解答欄に記入しな さい。

(例) ϕ 10

解答 直径が10mm

- (1) R10
- (2) (※どのような幾何公差の記号なのか)
- (3) $S \phi 10$
- (4) C10
- (5)
- (6) ϕ 10g6 (※g6の具体的な数値については回答不要)
- (7) φ10H7 (※H7の具体的な数値については回答不要)
- (8) □10
- (9) t10
- (10) $\bigcirc \phi 0.01$ A

問題3 解答欄

(1)	
(2)	
(3)	
(4)	
(5)	
(6)	
(7)	
(8)	
(9)	
(10)	

問題4 次の問いに答えなさい。

【 問題 4-1 】 次の(1)から(2)の文中の(A)から(M)に該当する語句を、下記の語群(ア)から(ニ)の中から選び、その記号を解答欄に記入しなさい。ただし、重複使用は不可とする。

(1)普通のねじまわしには、(A)製の軸と刃先がついている。(A)が選ばれるのは、(B)が高いためである。(B)は、材料の弾性的なたわみにくさ、すなわち、曲がりにくさの尺度となる。また、軸は、(C)が高くなければならない。もし (C)が低いと、強くねじったときに塑性変形を起こしてしまう。刃先は(D)が大きくなければならない。(D)が十分でないと、刃先がすり減ったりしていたんでしまう。

軸および刃先の材料は、曲がりにくくねじれにくいのみならず、折れにくくなくてはならない。たとえば(E)は、(B)、(C)、(D)ともに十分高い材料であるが、もろすぎるという欠点のために、ねじまわし用の材料としては適さない。(E)は、(A)に比べて(F)が低すぎるのである。

(2)最近のターボジェットエンジンのターボファンブレードは、(G)製である。この(G)は、十分に高い(B)と(C)と(F)を備えている。また、ターボファンブレード用の金属は、急激に繰り返し変動する荷重によって生ずる(H)や、高速でぶつかる水滴や硬い粒子による(I)や、海岸付近の離着陸の際に考慮すべき(J)にも耐えうるものでなければならない。また、軽量化を図るため、軽くて強いことすなわち(K)がきわめて重要である。

エンジンブレードとなると、材料はいっそう苛酷な要求を満たさなければならない。エンジンブレードは、今日では 950 $^{\circ}$ という高い温度で作動している。このため、材料は前述のような諸要求に加えて、(L)、耐クリープ性の条件をも満たさなければならない。この厳しい条件を満たす材料である (M) が主に用いられている。

[問題4-1の語群]

(ナ) ニッケル基合金 (ニ) セラミックス

(ア) プラスチック	(イ)疲労	(ウ) 摩耗	(エ) 硬度	(才) CFRP
(カ) 破壊靭性	(キ) 弾性率	(ク) 圧縮強さ	(ケ) 高炭素鋼	(コ) 固有振動数
(サ) 耐圧性	(シ) 応力集中	(ス) アルミ合金	(セ) 比強度	(ソ) 弾性変形
(タ) 降伏点	(チ) 腐食	(ツ)耐酸化性	(テ) 比重	(ト) チタン合金

【 問題 4-2 】 次の(1)から(3)の文中の(N)から(Y)に該当する語句を、下記の語群(あ)から(な)の中から選び、その記号を解答欄に記入しなさい。ただし、重複使用は不可とする。

- (1)制御系の応答別の構成要素には、バネや電気抵抗のような (N)、ダンパーやコイルのような (O)、タンクやコンデンサのような (P)、バネとダンパーあるいは抵抗とコンデンサの組み合わせ要素である (Q)、質量、バネとダンパーあるいは抵抗、コンデンサとコイルの組み合わせ要素である (R) や入力信号を加えても直ちに出力信号が現れない (S) などの様々な基本要素がある。
- (2) 長さの測定において標準ゲージは寸法の基準となるものであり、代表的なものとして(T) ゲージがある。また、寸法検査用の限界ゲージの代表的なものとして穴検査用の(U) ゲージや軸検査用の(V) ゲージがある。
- (3) 砥粒を用いて削ったり磨いたりする加工である砥粒加工は、研削や (W) のような固定砥粒を用いる場合と (X) のような遊離砥粒を用いる場合に分けられ、一般に (Y) 材料に対して使われる。

[問題4-2の語群]

(あ) 2次遅れ要素	(い) 微分要素	(う) 無駄時間要素	(え) シーケンス要素	(お) ステップ要素
(か) 1次遅れ要素	(き) 積分要素	(く) 比例要素	(け) インパルス要素	(こ) はさみ
(さ) プラグ	(し) ホーニング	(す) ブローチ加工	(せ) ダイヤル	(そ) すきま
(た) リング	(ち) 軟らかい	(つ) ラッピング	(て) ブロック	(と) 硬い

(な) リーマ加工

問題4 解答欄

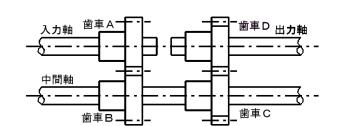
[問題4-1]


A	В	С	D	Е
F	G	Н	I	J
K	L	M		

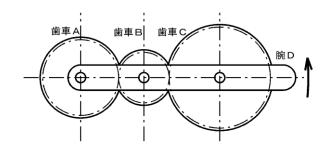
[問題4-2]

N	О	P	Q	R		
S	Т	U	V	W		
X	Y					

問題5 次の問い(1)から(3)について、答えを解答欄に記入しなさい。


(1)同じモジュールで歯数が20枚から10枚飛びに100枚までの歯車が1個ずつある。 この中から4個の歯車を選んで右図のような2段歯車列を構成する。この際、歯車 Bと歯車Cは同じ軸に固定されているため回転数は同じである。ここで、入力軸の 回転数と出力軸の回転数の比が15:7となるようにするにはどのように歯車を組 み合わせれば良いか、5通りの組合せを全て求めなさい。

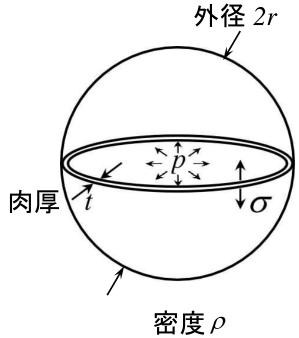
ただし、歯車Cの歯数は70枚、歯車Aの歯数は歯車Cの歯数よりも少なく、歯車Bの歯数は歯車Dの歯数よりも少ないとする。


- (2) 右図のような 2 段歯車列がある。この歯車列には以下の条件が与えられている。
 - (a) 入力軸と出力軸は同一軸線上に配置されている。
 - (b) 4個の歯車のモジュールは全て同じである。
 - (c) 歯車Aと歯車Bの歯数比は1:5、歯車Cと歯車Dの歯数比は1:4である。 歯車Aの歯数が20枚の場合、残る3個の歯車の歯数を求めなさい。計算過程 も記入しなさい。

ただし、歯車のピッチ円直径は モジュール×歯数 とする。

(3) 右図のような差動歯車列がある。これは歯車A、歯車B、歯車Cが腕Dによって結ばれており、腕Dは歯車Aの中心の周りを回転するものである。ここで、歯車Aを固定した状態で腕Dを反時計回りにn回転させたときの各歯車の回転数を求めなさい。

なお各歯車の歯数はそれぞれ z_A 、 z_B 、 z_C とし、反時計回りを正、時計回りを負とする回転の向きも含めて求めなさい。計算過程も記入しなさい。



問題5 解答欄

	(答え)
(1)	
(1)	
	(計算過程)
(2)	
(2)	
	(答え)
	(計算過程)
(3)	
	(答え)

問題 6 図のように、密度 ρ の材料で作られた、外径2r、肉厚t の薄肉球形の圧力容器に、圧力pのガスを収めるとする。ただし、安全率はすべての材料について1とする。次の問い(1)から(3)について、それぞれの計算過程と答えを解答欄に記入しなさい。

(1) この圧力容器の質量m を、 π 、 ρ 、r、t で表しなさい。ただし、肉厚t は外径に比べて十分に薄いものとする。

(2) 下表に示す材料のうち、容器の重量を最小にするものはどれか。 選択理由も記入しなさい。ただし、容器の壁に生じる応力 σ は、次式で与えられる。

$$\sigma = \frac{p \cdot r}{2t}$$

(3) 下表に示す材料のうち、材料費を最小にするものはどれか。選択理由も記入しなさい。

材料	降伏点 $\sigma_{_{y}}$	密度 ρ	1000kg あたりの価格 C
	(MN/m ²)	(Mg/m ³)	(円)
強化コンクリート	200	2	70,000
合金鋼	1000	8	300,000
軟鋼	400	8	100,000
アルミ合金	500	2.5	500,000
GFRP	200	1.8	600,000
CFRP	500	1.5	10,000,000

問題6 解答欄

	(31 kt) P (1)
	(計算過程)
(1)	
	/ http://
	(答え)
	(選択理由)
(2)	
(2)	
	(答え)
	(選択理由)
(3)	
	(答え)

問題7 次の(1)から(10)の語句のうち4つを選択し、選んだ語句の番号を解答欄の()内に記入する。各番号で示された 2つの語句の説明と両者の違いを 200 字程度でまとめなさい。

- (1) 「運動転写」と「圧力転写」
- (2) 「CAD」と「CAE」
- (3)「すべり軸受け」と「ころがり軸受け」
- (4) 「RP (Rapid Prototyping)」と「AM (Additive Manufacturing)」
- (5) 「切削加工」と「研削加工」
- (6)「焼入れ」と「焼もどし」
- (7) ねじの「ピッチ」と「リード」
- (8)「ON/OFF制御」と「PID制御」
- (9) 「ブラシ付モータ」と「ブラシレスモータ」
- (10) (モータの回転数制御における) 「PWM制御(Pulse Width Modulation)」と「PAM制御(Pulse Amplitude Modulation)」

問題7 解答欄

(200 字程度で記載)

) <u>1</u> —	及 C 的 载 /
(
)	
()	
(
)	
(
)	