# カーボンナノコイルを活用した 新規セラミックス基複合材料の開発

## Development of Novel Ceramic Matrix Composites Utilizing Carbon Nanocoils

長谷川 泰則\* 垣辻 篤\* 久米 秀樹\*\* Yasunori Hasegawa Atushi Kakitsuji Hideki Kume 野坂 俊紀 \*\*\* Toshikazu Nosaka

(2013年6月20日 受理)

Carbon nanocoil dispersed alumina ( $Al_2O_3$ -CNC) composites were fabricated using spark plasma sintering (SPS) at 1200 °C for 10 min under 40 MPa, using nano- $Al_2O_3$  powders and a carbon nanocoil. The effects of additional CNC contents between 0.5 and 4 wt% on densification, microstructure, mechanical and electrical properties were investigated. The  $Al_2O_3$ -CNC composites by CNC contents below 2 wt% exhibited relative densities higher than 98 %, in which CNCs were well dispersed, while maintaining the coil structure. In terms of Vickers hardness, the composite with the addition of CNC up to 2 wt% showed equal or higher values than those of  $Al_2O_3$ . However, further additional CNC contents decreased the hardness because of the formation of many pores located within CNC agglomerates. Indentation fracture toughness increased to 5.3 MPa•m<sup>1/2</sup> by the CNC content of 2 wt%, which is about 30 % higher than that of  $Al_2O_3$ . Electrical resistivity of  $Al_2O_3$ -CNC composites was decreased drastically by the addition of 0.5 wt% CNC. Up to 2 wt%, it was 14 orders of magnitude lower than that of  $Al_2O_3$ .

Key Words: carbon nanocoils(CNC), Al<sub>2</sub>O<sub>3</sub>-CNC composite, spark plasma sintering(SPS), microstructure, mechanical property, electrical resistivity

## 1. はじめに

カーボンナノコイル (Carbon nanocoil: 以下 CNC と 表記)は、線径・コイル径がナノメートルオーダーの らせん構造をもつカーボン繊維である. CNC は、カー ボンナノチューブ (CNT) と同様に高い導電性を持つ ことに加え、強靭なバネとしての機械的特性や電磁波 に活性など優れた性質を有することから、電界電子 放出材、電磁波吸収材、制振材、透明導電膜材など 幅広い分野への応用が期待されている<sup>1-5</sup>.中でも電磁波吸収材としては,近年これまでの市販品(炭素材料)にはない高周波広帯域での良好な吸収特性(1~100 GHz で 20 dB 以上の吸収能)が見出されており<sup>5)</sup>,次世代材料として有望視されている.しかし,それらはエポキシ樹脂等の高分子材をベースとしたものであり,CNC とセラミックスとの複合材に関する報告はほとんどなく,CNC 複合化による効果について検討されていないのが現状である.本研究では,CNC を最も汎用的なセラミックスであるアルミナ(Al<sub>2</sub>O<sub>3</sub>)と複合化することで Al<sub>2</sub>O<sub>3</sub>-CNC 焼結体を作製し,CNC が Al<sub>2</sub>O<sub>3</sub> の物性に及ぼす効果について検討した.

<sup>\*</sup> 化学環境科

<sup>\*\*</sup> 経営企画室 経営戦略課

<sup>\*\*\*</sup> 経営企画室 経営戦略課(現 和泉商工会議所)

## 2. 実験方法

#### 2.1 Al<sub>2</sub>O<sub>3</sub>-CNC 焼結体の作製

出発原料として,市販の Al<sub>2</sub>O<sub>3</sub> 粉末(大明化学工業(株)製,TM-DAR)及び CNC 粉末を用いた.CNC は, 大阪府地域結集型共同研究事業から提供を受けたもの で,走査型電子顕微鏡(SEM)写真と基本仕様<sup>®</sup>をそ れぞれ Fig. 1, Table 1 に示す.まず,所定量の CNC を 2- プロパノール中にて 5 分間超音波攪拌し,分散 処理を行なった後,Al<sub>2</sub>O<sub>3</sub> 粉末を添加し,再び超音波 攪拌処理を行なった.次いで,大気中及び真空下にて 加熱乾燥し,Al<sub>2</sub>O<sub>3</sub>-CNC 混合粉末を得た.得られた混 合粉末を用い,放電プラズマ焼結(SPS: Spark Plasma Sintering)装置(住友石炭鉱業(株),SPS-1020)によ り,1100~1200 °C,保持時間 600 s,真空中,加圧力 30 又は 40 MPa の条件下で焼結を行なった.比較とし て,同条件によるAl<sub>2</sub>O<sub>3</sub> 焼結体の作製も行なった.

#### 2.2 Al<sub>2</sub>O<sub>3</sub>-CNC 焼結体の評価

得られた焼結体おいて,アルキメデス法 (JIS R1634) により嵩密度を測定し, Al<sub>2</sub>O<sub>3</sub> 及び CNC の理論密度を 4.0<sup>60</sup> g/cm<sup>3</sup>, 1.8<sup>30</sup> g/cm<sup>3</sup> として相対密度を算出した.次 いで,粉末 X 線回折 (XRD) 装置 (リガク, RINT2000) を用いた相の同定,SEM による微細構造観察やラマ ン分光測定による G/D 比の評価を行なった.また,ビッ カース硬度計 (アカシ,AVK-C2)を用い試験荷重 98 N で硬度を測定し,圧子圧入 (IF) 法による破壊靭性試 験,Van der Pauw 法を用いた電気抵抗率測定を行い, 機械的・電気的性質についての評価も行なった.

### 実験結果と考察

### 3.1 Al<sub>2</sub>O<sub>3</sub> と CNC の複合化

Fig. 2 に焼結前の Al<sub>2</sub>O<sub>3</sub>-CNC 混合粉末の SEM 写真 を示す. CNC は、全体として比較的均一に分散して いることがわかった. Fig. 3 に Al<sub>2</sub>O<sub>3</sub> に対し CNC を 2 wt% 添加した試料 (以後、Al<sub>2</sub>O<sub>3</sub>-2CNC と表記)の各 焼結温度 (加圧力:30 又は 40 MPa) での相対密度を 示す. 比較のため、Al<sub>2</sub>O<sub>3</sub> 焼結体の結果も併せて示す. Al<sub>2</sub>O<sub>3</sub>-2CNC は、Al<sub>2</sub>O<sub>3</sub> と同様、焼結温度が高くなる に従い相対密度が向上し、1200 °C で 96 % に達した. 加圧力を上げることで (30 → 40 MPa)、相対密度は更 に増加し、より緻密な焼結体 (相対密度:98 %)が得 られることがわかった.

Fig. 4 に Al<sub>2</sub>O<sub>3</sub> ならび Al<sub>2</sub>O<sub>3</sub>-2CNC 1200 ℃ 焼結体の 破断面 SEM 写真を示す. CNC の添加により,マトリッ クスであるアルミナの粒成長は抑制され, また CNC



Fig. 1 SEM image of CNCs.

Table 1 Specifications of CNC sample.

| Shape                  | Coil           |
|------------------------|----------------|
| Coil length            | a.v. 20 um     |
| Fiber diameter         | a.v. 150 nm    |
| Coil diameter          | a.v. 500 nm    |
| Coil pitch             | a.v. 500 nm    |
| Young's modulus        | 0.1 TPa        |
| Electrical resistivity | 1E-2~5E-3 Ω•cm |



Fig. 2 SEM image of Al<sub>2</sub>O<sub>3</sub>-CNC mixed powder.



Fig. 3 Relationship between sintering temperature and relative density for Al<sub>2</sub>O<sub>3</sub>-CNC and Al<sub>2</sub>O<sub>3</sub>.



**Fig. 4** Fracture surface of sintered samples. (a) Al<sub>2</sub>O<sub>3</sub>, (b) Al<sub>2</sub>O<sub>3</sub>-2CNC

はコイル形状を維持しつつ比較的均一に分散している ことがわかった.また,いずれの試料も粒界破壊と粒 内破壊の領域が見られるものの,Al<sub>2</sub>O<sub>3</sub>-2CNC は Al<sub>2</sub>O<sub>3</sub> と比べ,粒内破壊がより支配的であった.Fig.5に Al<sub>2</sub>O<sub>3</sub>ならび Al<sub>2</sub>O<sub>3</sub>-2CNC 1200 °C 焼結体の XRD パター ンを示す.いずれも Al<sub>2</sub>O<sub>3</sub> に帰属されるピークのみ見 られ,CNC 添加試料に Al<sub>2</sub>O<sub>3</sub> と CNC との反応物など のピークは確認されなかった.

Fig. 6 に Al<sub>2</sub>O<sub>3</sub>-2CNC 1200 °C 焼結体中で CNC 存在 領域と推測される部位から取得したラマンスペクトル を示す.比較のため,原料 CNC のスペクトルも示す. CNC 由来の D バンドがマトリックスである Al<sub>2</sub>O<sub>3</sub> の ピークと重なっているため,参考程度になるが,G/D 比(各面積から算出)は0.7であり,原料 CNC の値(0.4) と比べると高く,結晶性の向上が示唆された.このこ とについて更に詳細を調べるため,CNC のみを真空 中,1200 °C で SPS による熱処理を行なった.熱処理 により,Fig.7の透過型電子顕微鏡(TEM)写真に見ら れるよう CNC のグラファイト化(結晶化)が進行し ており,ラマン分光測定結果と良く一致した.

#### 3.2 Al<sub>2</sub>O<sub>3</sub>の物性に及ぼす CNC 複合化効果

作製した Al<sub>2</sub>O<sub>3</sub>-xCNC(x = 0, 0.5, 1, 2, 4 wt%) 焼結体 における各種評価の結果を以下に示す.

Fig. 8 に Al<sub>2</sub>O<sub>3</sub>-xCNC(x = 0, 0.5, 1, 2, 4 wt%)1200 °C 焼結体の硬度と相対密度の CNC 添加量依存性を示す. 硬度は CNC を 0.5 wt% 添加したとき, Al<sub>2</sub>O<sub>3</sub> より高く



Fig. 6 Raman spectra of (a)  $Al_2O_3$ -2CNC sintered sample and (b) CNC raw powder.



Fig. 7 TEM images of (a) before and (b) after heat treatment in a vacuum.



Fig. 8 Hardness and relative density of sintered body as a function of CNC additive amount.

なり,更に添加量を増やすと,徐々に低下することが わかった(2 wt% までは Al<sub>2</sub>O<sub>3</sub> と同程度). これは 0.5 wt% 添加試料では,Al<sub>2</sub>O<sub>3</sub> と同程度に緻密で,かつ CNC の添加で粒成長が抑制され Al<sub>2</sub>O<sub>3</sub> より微細な粒子 から成っているためと思われる.一方,添加量が増え ると CNC 自身が Al<sub>2</sub>O<sub>3</sub> の焼結を阻害するため相対密 度が低下すると共に,CNC の凝集に伴い気孔が生成 し (Fig. 9),それが欠陥となることで硬度が大きく低 下したと考えられる.

Fig. 10 に Al<sub>2</sub>O<sub>3</sub>-xCNC(x = 0, 0.5, 1, 2, 4 wt%)1200 °C 焼結体の破壊靭性値と CNC 添加量との関係を示す. 破壊靭性値 (K<sub>1C</sub>) は新原の式<sup>8)</sup>より算出した. CNC の 添加量が増加するに従い, 靭性は向上し2 wt% で最 大 (5.3 MPa·m<sup>1/2</sup>) となり, Al<sub>2</sub>O<sub>3</sub> と比べ約 30 % 増大す ることがわかった. 圧子圧入後のクラック進展の様子 を SEM 観察すると, Al<sub>2</sub>O<sub>3</sub> ではクラックが粒界に沿っ て直進していたのに対し, CNC を添加した試料では, クラックの偏向や粒内でのクラック進展が確認され た. これより, CNC を添加することでクラック進展 の緩和が起ったと推測され, CNC 添加試料において は, クラックを進展させるためにより大きな負荷(破 壊エネルギー)が必要となり, これが高靭化の一因と 推測された.

Fig. 11 に Al<sub>2</sub>O<sub>3</sub>-xCNC(x = 0, 0.5, 1, 2, 4 wt%)1200 °C 焼結体の電気抵抗率の CNC 添加量依存性を示す (高 抵抗な Al<sub>2</sub>O<sub>3</sub> については二重リング法により測定). CNC を 0.5 wt% 添加することで抵抗率は急激に減少 し, 2 wt% の添加で Al<sub>2</sub>O<sub>3</sub> より 14 桁低下することが わかった. これは, CNC が Al<sub>2</sub>O<sub>3</sub>-CNC 焼結体中で比 較的良く分散し, さらに導電パスが形成されやすい形



Fig. 9 Fracture surface of Al<sub>2</sub>O<sub>3</sub>-4CNC sintered sample.



Fig. 10 Relationship between fracture toughness and CNC additive amount.



Fig. 11 Relationship between electrical resistivity and CNC additive amount.

状(コイル形状)を持つため、少ない添加量でも電気 的なパーコレーションが形成しやすかったためと考え られる.

## 4. まとめ

本研究では、近年高機能性ナノカーボン材として注 目されている CNC に着目し、セラミックスとの複合 化による新規セラミックス基複合材料の開発を目指し た. 複合化させるセラミックスとしては、最も汎用的 なアルミナを選択した.スラリー混合と放電プラズマ 焼結により Al<sub>2</sub>O<sub>3</sub>-CNC 焼結体を作製し、その際、分 散剤を用いない簡便な合成プロセスを採用した.

得られた焼結体について種々評価を行い, CNC が Al<sub>2</sub>O<sub>3</sub>の物性に及ぼす効果について調べた結果,以下 の知見が得られた.

- (1) 分散剤を使用しなくても Al<sub>2</sub>O<sub>3</sub>-CNC 混合粉末では、 CNC は比較的均一に分散する.
- (2) Al<sub>2</sub>O<sub>3</sub>-2CNC1200 °C 40 MPa 焼結体では, CNC はコ イル構造を保持しながら,比較的均一に分散した 状態で緻密化する. CNC の添加により, Al<sub>2</sub>O<sub>3</sub>の 粒成長が抑制される.
- (3) CNC との複合化により、Al<sub>2</sub>O<sub>3</sub>の硬度及び破壊靭 性値は向上し、電気抵抗率は大きく低下すること がわかった.硬度は2 wt% 添加までは Al<sub>2</sub>O<sub>3</sub> と同 等以上,靭性値は2 wt% までは添加量が増えるに つれ増大し、2 wt% で最大値を示した (Al<sub>2</sub>O<sub>3</sub> と比

51

べ約30%向上). また,電気抵抗率は,0.5 wt% の添加で急激に減少し,2 wt%添加でAl<sub>2</sub>O<sub>3</sub>と比較 し14桁低下した.

#### 謝 辞

カーボンナノコイル (CNC)を供与して頂きました JST 大阪府地域結集型共同研究事業「ナノカーボン活 用技術の創成」の関係各位に感謝の意を表します.

#### 参考文献

- T. Hayashida, L. Pan, Y. Nakayama: Physica B, **323** (2002) 352.
- 2) 中山喜萬:表面科学, 25 (2004) 332.
- 3) 元島栖二, 陳 秀琴, 藩 路軍, 中山喜萬: ナノカーボ ンハンドブック, (株) エヌ・ティー・エス (2007) 775.
- 4) Dong-Lin Zhao, Zeng-Min Shen: Mater Lett., **62** (2008) 3704.
- 5) 大阪府地域結集型共同研究事業「ナノカーボン活用技術の創成」プロジェクト最終研究成果報告会資料 (2009).
- 6) 大阪府地域結集型共同研究事業「ナノカーボン活用技術の創成」URL http://www.ostec-tec.info/coe-osaka/
- Powder Diffraction File, Card No.46-1212 (Al<sub>2</sub>O<sub>3</sub>), Inetrnational Centre for Diffraction Data, Newtown Square, PA, 2001.
- 8) 新原皓一:セラミックス, 20 (1985) 12.