Sampling Methods and Examples of FT-IR Analysis for Minute Foreign Matter

> 菅井 實夫* Jitsuo Sugai

(2013年7月1日 受理)

キーワード:微小異物,付着・混入,FT-IR分析,転写サンプリング法

1. はじめに

近年,品質管理の高度化に伴って異物のサイズはま すます小さくなり,肉眼の分解能に近い約0.1 mmの 異物が付着・混入した製品の分析が不可欠となってい る.これらの微小異物は,天然繊維や紙類,ナイロン やポリエチレン,ポリエステルなどの合成樹脂類,金 属や無機塩類,さらにカビやバクテリア,昆虫の破片, フケ,皮膚,尿,唾液など生物に由来する物等,非常 に多種類である.さらに,これらの異物は単独か,あ るいは油やワックス等と混在した状態で存在する.こ れらの異物を構成する物質を特定するには,被付着物 に異物が付着したまま各種分析を行うこともあるが, 被付着物の情報が分析結果をより複雑にする可能性が あるため,被付着物からの異物の分離(サンプリング) が必要となる.

本報告では、これまでの異物分析の事例をふまえな がら、異物のサンプリング方法と、フーリエ変換赤外 分光分析装置 (FT-IR) による分析事例について述べる. とくに、FT-IR は他の分析方法と異なり、in situ、顕 微透過・反射法を採用することにより、約 0.1 mm の 微小試料からもスペクトルが得られるため、異物の同 定を行える可能性がある.

2. 異物の状況確認と予備分析

* 繊維・高分子料

2.1 異物の状況確認

2.1.1 目視あるいは光学顕微鏡観察

異物の形態と付着・混入状況の特徴を調べるために, 目視あるいは光学顕微鏡観察を必ず行う,とくに,異 物の色や形といった外見だけでなく,粘着性や硬さ, 脆さ等の情報を得るために詳細な観察を行うことが重 要である.繊維製品では,織物や編物の糸中の異物の 付着部分や,糸中の異物の巻き込みについて確認を行 う.

2.1.2 紫外線照射による蛍光観察

紫外線照射による蛍光観察は、付着している油分が 共役二重結合を有する有機化合物に由来することが多 いため、その確認に役立つ.例えば、樹脂成型品や金 属製品においては、異物が製品表面のある点を中心に 放射状に広がっている場合、何らかの液体が付着し、 周囲に拡散した可能性がある.このような場合は、ハ ンディタイプのUV ランプや紫外線顕微鏡により、異 物に紫外線を照射するだけで、有機化合物の有無が判 別できる.

2.2 予備分析

2.2.1 鑑別染料による繊維の識別

繊維製品は、繊維の種類を識別するための複合染料 である鑑別染料で染色すると、図1に示すように繊維 の種類(綿,ナイロン、アクリル、羊毛等)に応じて 発色が異なることが知られている.鑑別染料として、 ボーケンステイン(一般財団法人ボーケン品質評価機 構)や、カヤステインQ(日本化薬製株式会社)など が市販されている.異物が鑑別染料で発色する繊維で あれば, わずか1mm 程度の大きさでも, その種類を 推定することができる.

2.2.2 繊維の溶媒に対する溶解性

繊維の種類により,溶解する溶媒が限定されるもの がある.例えば,ナイロンは20%塩酸に,アセテー トは氷酢酸に,羊毛は次亜塩素酸ナトリウム溶液にい ずれも室温で溶解するため,溶解実験も物質の特定に 役立つ¹⁾.

2.2.3 元素分析による異物分析

外観観察から, 異物が無機物(塩類や金属)である と推測される時は, エネルギー分散型蛍光 X 線分析 装置による元素分析も有益である.

繊維の種類	染色後の様子	JIS Z 8102 による
和政府社《外国主义员		系統色名
綿		灰みの青緑
ナイロン		くすんだ黄緑
アセテート		あざやかな黄赤
羊毛		くすんだ赤みの黄
レーヨン		暗い灰みの青
アクリル		あざやかな赤
絹		くすんだ黄赤
ポリエステル		うすい緑みの黄

図1 多繊交織布を,鑑別染料(ボーケンステイン) により染色した様子

図2 (a) サンプリングした異物の光学顕微鏡写真 (b) 鑑別染料により染色した異物の光学顕微鏡 写真

図3 (a) 滴板に染色後の異物を入れた様子 (b) 20% 塩酸を加えて静置した後の様子

3. FT-IR による分析事例

3.1 固体異物の in situ 分析

3.1.1 固体異物のサンプリング

プラスチック容器内の底に,図2(a)に示すような約1mmの白い異物が複数あり,これらを光学顕微鏡で拡大観察しながら,針と先端が鋭利なピンセットを用いて容器からサンプリングした.

3.1.2 鑑別染料による分析

異物の一部について, 2.2.1 で記載した鑑別染料 (ボーケンステイン)で染色すると, 図 2(b) に示すよ うにくすんだ黄緑色に発色したため, 異物はナイロン であると考えられた.

3.1.3 溶解性の評価

次に,溶媒に対する溶解性を評価した. 滴板の凹部 に染色後の異物を入れ,20% 塩酸を加えて室温で数分 間静置した. その結果,図3(b)から明らかなように 異物は全て溶解したため,この異物がナイロンである ことを確認できた.

3.1.4 FT-IR による分析

異物について得られた赤外吸収スペクトル (FT-IR スペクトル)を図4に示す.また,測定装置に付属の データベース中のスペクトルとの照合を行った結果を 図5に示す.鑑別染料による分析結果および溶解性の 評価結果と図5から,この白い異物はナイロン6であ ることが明らかとなった.

3.1.5 その他の事例

これまでに測定した固体異物として,木材の表面に めり込んだ鋸の破片や鉄さび等,また,生地を構成す る繊維と繊維のわずかな隙間に紛れ込んだ異物があ

図4 異物の FT-IR スペクトル

FT-IR; Thermo Nicolet 製 Avatar360 付属装置; Split Pea 測定方法; 全反射測定 (ATR)法(一回反射モード) 測定範囲; 4000 ~ 600 cm⁻¹ 分解能; 4 cm⁻¹ スキャン回数; 128 検出器; 焦電型検出器 (DTGS) ATR 結晶; ゲルマニウム (Ge)

図5 (a) 異物のスペクトル (b) データベース中のナイロン6のスペクトル

る. このような場合, 異物がごく微小・微量であっても, ピンセット等でそのままサンプリングできれば FT-IR による分析を行うことができる.

3.2 繊維と油が混在している異物の FT-IR 分析

3.2.1 ダイヤモンドセルを用いた繊維と油の分離

繊維と油が混在している異物の場合は, 顕微 IR 用のダイヤモンドセルを用いて繊維を圧縮すること で,繊維からにじみ出た油と繊維とを分離し, 個別に FT-IR による分析が可能となる. ダイヤモンドセル(図 6)とは, 直径2~3 mm のダイヤモンドの窓板が埋め 込まれたディスクが2枚セットになったものであり, 赤外線の透過率を高めるため,硬い試料を薄くする際 によく用いられる. 図7に,繊維と油が混在している 異物の光学顕微鏡写真を示す. この異物を片方のディ スクの窓板に載せ,もう片方のディスクと重ね合わせ て圧縮し,繊維から油を分離した.

3.2.2 FT-IR による分析

図7に示す異物の大きさは約0.2 mm であり、約1 mm 以上の異物分析に適した ATR 法ではスペクトル が得られない可能性があった. そのため, より微小な 異物分析に適した顕微透過法を採用した.上述の,異 物を圧縮したダイヤモンドセルを FT-IR の付属装置 に装着し、繊維部分と油部分を個別に分析した、図 8(a), (b) に, それぞれ繊維部分, 油部分のスペクトル を示す.繊維部分のスペクトルは、繊維単体と油のス ペクトルが重畳したものに相当するため,図8(a)と (b)の差スペクトルが繊維単体に由来することになる. 差スペクトルとは、二つのスペクトルを吸光度スペク トルの形で表示させた上で、それらの差を求めたもの であり、両方のスペクトルに共通に現れる吸収ピーク が相殺され、目的物に起因する吸収ピークのみが表示 されるようになる.図8(c)に示す差スペクトルをデー タベースと照合した結果、繊維は絹であり、油はシリ コーンオイルであると認められた.

図 6 (a) 顕微 IR 用のダイヤモンドセルの外観 (b) ダイヤモンドの窓板がある 2 枚のディスク

図7 圧縮前の異物の光学顕微鏡写真

図8 (a) 繊維部分のスペクトル
(b) 油部分のスペクトル
(c) 繊維部分と油部分の差スペクトル
(d) データベース中の絹のスペクトル

FT-IR; Thermo Nicolet 製 Avatar360 付属装置; Continuµm 測定方法; 顕微透過法 測定範囲; 4000 ~ 650 cm⁻¹ 分解能; 4 cm⁻¹ スキャン回数; 64 検出器; 半導体型検出器 (MCT)

3.3 転写法による固体異物の分析

3.3.1 固体異物のサンプリング

図9に示すように、金属の表面に薄く、強固に付着 した白い異物の分析について述べる.光学顕微鏡によ る形態観察から、異物は、何らかの液体が蒸発して乾 固したものであると推測された.通常,固体表面に強 固に付着した異物のサンプリングでは, 溶剤による抽 出と濃縮を繰り返すことで実施する.また、ある程度 の厚みのある異物については鋭利なナイフで削り取っ てサンプリングすることができる.しかし,硬く,削 り取れるほどの厚みがない試料では、転写材に異物を 転写する方法(転写サンプリング法)で異物を簡便に サンプリングすることができる. 例えば, エタノール で清浄にしたアルミホイルをn-ヘキサンに浸し、素 早く異物の上をなぞることにより, n- ヘキサンに溶解 した異物をアルミホイル上に転写することができる. なお、転写材として用いたアルミホイルは、異物の形 状に応じて変形し、かつ、スペクトルには全く影響を 与えない基材として簡便に利用することができる.ま た、異物がプラスチックに付着しているときは、プラ スチックを侵さず、異物のみを溶解する溶媒をあらか じめ検討しておく必要がある.

3.3.2 X線分析顕微鏡による元素分析

得られた異物について,まず,X線分析顕微鏡(堀 場製作所,XGT-5200)を用いて元素分析を行ったとこ ろ,カルシウムが認められた.

3.3.3 FT-IR による分析

アルミホイルに転写した異物について得られたス ペクトルを図 10 に示す.図 10 において 1600 ~ 1200 cm⁻¹の波数域に表れたブロードなピークから,無機塩 類が含まれていることがわかった.

X線分析顕微鏡による元素分析の結果と合わせる と、図10の波数1600~1200 cm⁻¹のピークはカルシ ウム塩に由来することが明らかとなった.また、カル シウム塩(無機塩)のスペクトルには、C-H伸縮振動 に由来する波数3000 cm⁻¹付近にピークが現れないた め、図10の波数3000 cm⁻¹のピークは、他の物質由来 であることが示唆された.そこで、図10のスペクト ルが、カルシウム塩のスペクトルとその他の物質のス ペクトルとが重畳したものと仮定し、スペクトル解析 ソフトにより図10のスペクトルを2つのスペクトル に分解した.次に、分解した2つのスペクトルについ てデータベースとの照合を行ったところ、図11(b)お よび(c)の結果が得られた.図11(b)より白い異物を 構成する物質の一つは炭酸カルシウムであり、さらに、 図11(c)から、もう一つの物質はポリアクリレート樹

図9 金属表面に付着した異物の様子

図 10 異物の FT-IR スペクトル
FT-IR; Thermo Nicolet 製 Avatar360
付属装置 Continuµm
測定方法;顕微反射法
測定範囲;4000~650 cm⁻¹
分解能;4 cm⁻¹
スキャン回数;64
検出器;MCT.

- 図 11 (a) 異物のスペクトル (b) データベース中の炭酸カルシウムのスペク トル
 - (c) データベース中のポリアクリレート樹脂の スペクトル
 - (d) データベース中の2つのスペクトル (b と c) を重畳したスペクトル

脂(アクリル樹脂)であることが推測された. さらに、 炭酸カルシウムおよびポリアクリレート樹脂のスペク トルをそれぞれ示す図 11(b)および図 11(c)を解析ソ フト上で重ね合わせたものが図 11(d)である。解析ソ フト上で重ね合わせたスペクトルである図 11(d)は、 異物のスペクトルを示す図 11(a)とよく一致している ことが認められた. このことから、少なくとも異物中 には、炭酸カルシウムおよびポリアクリレート樹脂が 含まれていることがわかった。なお,解析ソフトは吸 光度表示で動作するため,反射率表示の図 10と上下 が反転したスペクトルが表示される.

3.4 転写法による液体異物の分析

3.4.1 液体異物のサンプリング

図 12 に示すように、金属の表面に付着した極めて 少量の液体異物についてのサンプリング例を紹介す る. この異物は、通常の液体異物のサンプリングに用 いる方法、すなわち、針やパスツールピペットの先端 に付着させる方法ではサンプリングできなかった. こ のような場合は、図 13(a) および (b) に示すように、 溶剤を用いない転写サンプリング法によりアルミホイ ルに転写する方法でサンプリングが可能となる.

3.4.2 FT-IR による分析

転写された異物について, 3.3.3 と同じ測定方法お よび測定条件で FT-IR による分析を行ったところ, 図 14(a) に示すスペクトルが得られた. データベース中 のスペクトルと照合を行った結果, 液体異物はパラ フィン系オイルであることがわかった. データベース 中のパラフィン系オイルのスペクトルを図 14(b) に示 す. さらに, 図 14(a) に示すスペクトルにおいて, 波 数 1700, 1180 cm⁻¹ の小さなピークから, 油脂の酸化 劣化により, カルボニル基が生成している可能性が示 唆された.

4. おわりに

微小異物が,各種製品や商品へ付着,あるいは混入 すると,その価値が大きく低下する.また,異物を構 成する物質や付着の状態によっては,修復できない場 合も多い.したがって,異物が付着・混入した原因を 調査し,再発防止に向けた取り組みを行うことは,非 常に重要である.とくに,製造や流通段階で付着・混 入する異物は,各段階の周辺環境と密接に関連した物 質であることが多く,異物の形態観察と各種分析技術 などを駆使することにより,異物を構成する物質名や 発生段階を解析できる場合が多い.

本報告で詳述したように, FT-IR を活用した微小異

図12 金属表面に付着した異物の様子

図13 (a) アルミホイルへの転写の様子 (b) FT-IR 分析用に, 異物を転写したアルミホ イルをスライドガラスに貼りつけた様子

図 14 (a) 異物のスペクトル (b) データベース中のパラフィン系オイルのス ペクトル

物の分析では,分析対象の異物を効率よくサンプリン グすることが重要となる.また,あらかじめ物質名を 推定できるほど,外観観察や予備分析を実施すること により,その後の分析が大きく左右されることは言う までもない.なお,本報告が異物分析の一助になれば 幸いである.

参考文献

1) 新版高分子分析ハンドブック,社団法人日本分析化学 会・高分子分析研究懇談会編,(1995)879.

本技術報告は、地方独立行政法人大阪府立産業技術総合研究所の許可なく転載・複写することはできません.

繊維の種類	染色後の様子	JIS Z 8102 による 系統色名
綿		灰みの青緑
ナイロン		くすんだ黄緑
アセテート		あざやかな黄赤
羊毛		くすんだ赤みの黄
レーヨン		暗い灰みの青
アクリル		あざやかな赤
絹		くすんだ黄赤
ポリエステル		うすい緑みの黄

図1 多繊交織布を,鑑別染料(ボーケンステイン) により染色した様子

図3 (a) 滴板に染色後の異物を入れた様子 (b) 20% 塩酸を加えて静置した後の様子

図7 圧縮前の異物の光学顕微鏡写真

図12 金属表面に付着した異物の様子

図 2 (a) サンプリングした異物の光学顕微鏡写真 (b) 鑑別染料により染色した異物の光学顕微鏡 写真

図 6 (a) 顕微 IR 用のダイヤモンドセルの外観 (b) ダイヤモンドの窓板がある 2 枚のディスク

図9 金属表面に付着した異物の様子

図 13 (a) アルミホイルへの転写の様子 (b) FT-IR 分析用に, 異物を転写したアルミホ イルをスライドガラスに貼りつけた様子