# 電子サイクロトロン共鳴プラズマを用いた スズ添加酸化インジウム薄膜の表面改質

# Surface Modification of Indium-Tin Oxide Thin Films Using Electron Cyclotron Resonance Plasma

| 筧 芳治*            | 佐藤 和郎*             | 北畠 顕英 **           |
|------------------|--------------------|--------------------|
| Yoshiharu Kakehi | Kazuo Satoh        | Akihide Kitabatake |
| 小川 倉一**          | 中島 嘉之***           | 中野 信夫***           |
| Souichi Ogawa    | Yoshiyuki Nakajima | Nobuo Nakano       |

#### (2007年5月15日 受理)

Indium-tin oxide (ITO) polycrystalline films with a smooth surface and high work function were fabricated through surface modification using electron cyclotron resonance (ECR) plasma. The substrate bias voltage effects on the surface morphology, and crystallographic, electrical, and optical properties of ITO polycrystalline films were investigated. The crystallographic, electrical, and optical properties of ITO polycrystalline films showed no substrate bias voltage dependence. Their surface roughness and work function were simultaneously improved at a substrate bias voltage of -60 V, yielding films with a surface average roughness of 0.5 nm and a work function of 5.2 eV. The results were attributable to the etching effect and surface oxidation by excited species such as ions and radicals generated in the ECR plasma.

## キーワード:透明導電膜, ITO 薄膜, ECR プラズマ, 表面改質, 有機 EL 用電極

## 1. はじめに

有機電界発光(有機 EL)素子を用いた自発光型のフ ラットパネルディスプレイは,自発光型のフラットパ ネルディスプレイであり,視野角が広い,コントラス トが高い,応答速度が速いなどの優れた特性を有する ため,次世代ディスプレイとして期待されている.こ の素子は,ガラス基板上に陽極(アノード)電極,正 孔(ホール)輸送層,発光層,電子輸送層,陰極(カソー ド)電極から成る機能分離された層による積層構造で 構成されており,陽極よりホールが,陰極より電子が 抵抗率の高い有機層(発光層)に注入され,再結合に より発光するキャリア注入型素子である.従って,抵 抗率の高い有機層への高密度のキャリア注入は,有機 EL 素子にとって非常に重要な問題であり,キャリア 注入に重要な役割を果たしている電極材料は,素子の 発光特性や寿命などへ与える影響が極めて大きいと考 えられる.

キャリア注入型である有機 EL 素子では,発光材料 の最高被占軌道 (HOMO) にホールを,最低空準位軌 道 (LUMO) に電子を外部から供給するので,正孔輸 送層の HOMO と陽極の仕事関数が一致することが望まし い.また,発光を外部に取り出すためには,いずれか の電極が透明でなければならない.現在,正孔輸送材 料としてトリフェニルジアミン (TPD),ポリビニルカ ルバゾール (PVK),ポリエチレンジオキシチオフェン: ポリスチレンスルフォネート (PEDOT: PSS) などが使 用されており,それらの HOMO は約 5.0 ~ 5.8 eV の 範囲であることから<sup>1)</sup>,陽極材料には約 5 eV 以上の仕 事関数と同時に可視光領域での透明性が要求される.

<sup>\*</sup> 情報電子部 電子・光材料系

<sup>\*\*</sup> 三容真空工業株式会社

<sup>\*\*\*</sup> 理研計器株式会社

ガラス基板上の透明電極として,スズ添加酸化イ ンジウム (Indium-Tin Oxide: ITO) 薄膜が広汎に使用さ れている.しかし、ITO 薄膜の仕事関数は通常約 4.6 ~ 4.8 eV と小さいため、ウェットプロセスやドライ プロセスを用いて、ITO 薄膜の表面酸化による仕事関 数の増加が多く試みられている<sup>2,3)</sup>. さらに,低駆動 電圧化を目指した近年の有機層の超薄化に伴い、ITO 薄膜表面の平坦性が非常に重要視されており、特性改 善のための大きな課題となっている. そこで, 我々は ガラス基板上の ITO 薄膜表面の仕事関数および平坦 性の改善を目的として,低エネルギーかつ高密度プラ ズマを発生できる電子サイクロトロン共鳴 (Electron Cyclotron Resonance: ECR) プラズマを用い, ITO 薄膜 に印加するバイアス電圧を変化させて、ITO 薄膜の表 面改質を試みた. その結果, マイナスの基板バイアス 電圧を印加することにより, ITO 薄膜表面の仕事関数 および平坦性を同時に改善できることを見出したので

## 2. 実験方法

報告する.

ITO 薄膜の表面改質を行うためのプラズマ発生装置 として, ECR プラズマ源(㈱ダイヘン: ESSW-10N) を使用した.装置全体の概略構成を図1に示す.マイ クロ波入力電力は300 W,窒素と酸素の混合ガス(混 合比は4:1)の圧力は1.3×10<sup>-2</sup> Pa,処理時間は10分 と一定にした.試料は、マグネトロンスパッタ法によ りガラス基板上に作製されたITO 薄膜(三容真空工業 ㈱製:SLR;膜厚150 nm)を用い、基板に印加するバ イアス電圧を変化させて表面改質を行った.

ECR プラズマの評価として,基板ホルダーにおけ る電流-電圧曲線の測定,およびプラズマの発光分光 分析を行った.一方,ITO 薄膜については,X線回折 による結晶構造,分光光度計による透過率および反射 率,Van der Pauw 法による比抵抗,大気中紫外線光電 子分析装置<sup>4)</sup>によるITO 薄膜表面の仕事関数,原子 間力顕微鏡による表面平均粗さの評価を行った.

## 3. 結果と考察

### (1) ECR プラズマの特性

ECR プラズマについて,基板バイアス電圧 ( $V_{bias}$ )を 変化させた時に基板ホルダーに流れる電流密度 ( $I_h$ )を 測定した.その結果を図2に示す.図2より,基板バ イアス電圧が約-27 Vの時,基板ホルダーに流れる電 流密度はほぼ0mAcm<sup>-2</sup>であることがわかった.そし



図1 ECR プラズマ源を用いたプラズマ処理装置の模 式図

Schematic diagram of plasma treatment apparatus using ECR plasma source.



図 2 基板バイアス電圧 (V<sub>bias</sub>) を変化させた時に基板 ホルダーに流れる電流密度 (I<sub>b</sub>) との関係

Relationship between current density and bias voltage of substrate holder.

Micro wave input power is 300 W. Total gas pressure is  $1.3 \times 10^{-2}$  Pa and oxygen partial pressure is  $2.6 \times 10^{-3}$  Pa.

て, 基板バイアス電圧が -27 V よりプラス側に増加し た場合, ECR プラズマ中で発生した電子が基板ホル ダーに流れ込み, 電子電流による急激な電流密度の増 加が見られた. 一方, 基板バイアス電圧が -27 V より もマイナス側に増加した場合, プラズマ中で発生した 正イオンが基板ホルダーに流れ込み, イオン電流によ る緩やかな電流密度の増加が見られた.

次に, ECR プラズマの発光分光分析を行い,得られた発光スペクトルを図3に示す.図3より,窒素と酸素の混合ガスによるプラズマからの発光スペクトルを同定した結果,主な励起種として,窒素原子イオン( $N^+$ ),窒素分子イオン( $N_2^+$ ),窒素原子ラジカル( $N^*$ ),酸素分子イオン( $O_2^+$ ),酸素原子ラジカル( $O^*$ )が存在していることがわかった.

#### (2) ECR プラズマ照射による ITO 薄膜の特性

未処理および種々の基板バイアス電圧下でプラズマ 処理された ITO 薄膜の結晶構造の変化を調べるため



図 3 ECR プラズマの発光スペクトル Emission spectrum from ECR plasma measured by optical multichannnel analyzer.

Micro wave input power is 300W. Total gas pressure is  $1.3 \times 10^{-2}$  Pa and oxygen partial pressure is  $2.6 \times 10^{-3}$  Pa.

に, X線回折測定を行った.その結果を図4に示す. 図4からわかるように,未処理および種々の基板バイ アス電圧下でプラズマ処理された ITO 薄膜のすべて について同様な回折パターンが得られ,これらの回折 ピークを同定した結果,酸化インジウムの222,400, 411,431,440,622 面であることが確認された.い ずれの試料も回折ピークの2θ角度および強度に対す る変化が見られないことから,プラズマ処理に依る ITO 薄膜の結晶構造に変化がないことがわかる.

次に、未処理および種々の基板バイアス電圧下でプ ラズマ処理された ITO 薄膜について、紫外から近赤外 光領域における透過および反射スペクトルを測定した 結果を図5に示す.種々の基板バイアス電圧下でプラ ズマ処理されたにもかかわらず、透過および反射スペ クトルは、未処理のスペクトルと比べて変化が見られ なかった.なお、図5における波長1000 nm 以上での 透過スペクトルの減少および反射スペクトルの増加は、 キャリア密度に起因するプラズマ振動が原因である<sup>5</sup>.

また, Van der Pauw 法を用いて,未処理および種々 の基板バイアス電圧下でプラズマ処理された ITO 薄 膜の比抵抗を測定した.未処理の ITO 薄膜の比抵抗 は約 1.5 × 10<sup>-4</sup> Ωcm であり,種々の基板バイアス電圧 下でプラズマ処理された ITO 薄膜の比抵抗もほぼ等 しい値を示した.

以上のように、本実験の範囲内では、窒素と酸素の 混合ガスを用いて種々の基板バイアス電圧下でプラズ マ処理された ITO 薄膜は、未処理の ITO 薄膜と比較 して結晶構造、光学・電気特性に大きな変化は見られ なかった.

ITO 薄膜表面の仕事関数 (φ) と基板バイアス電圧依 存性の関係を図6に示す.図6より,ITO 薄膜表面の



図4 未処理および種々の基板バイアス電圧下でプラ ズマ処理された ITO 薄膜の XRD パターン

XRD patterns of ITO as-deposited film and films treated at various substrate bias voltages in ECR plasma.

(a) as-deposited, (b)  $V_{\text{bias}}$  = -60 V, (c)  $V_{\text{bias}}$  = 40 V, and (d)  $V_{\text{bias}}$  = 100 V.



図5 未処理および種々の基板バイアス電圧下でプラ ズマ処理された ITO 薄膜の透過率および反射率 スペクトル

Transmission and reflection spectra of ITO as-deposited film and films treated at various substrate bias voltages in ECR plasma.

仕事関数は,基板バイアス電圧の極性に依存せず,プ ラズマ処理を行うことで大きく増加する傾向を示し た.特に,−60 Vの基板バイアス電圧でプラズマ処理 された ITO 薄膜において,本実験で最大の仕事関数 の値 (5.2 eV) が得られた.この原因として,以下のこ とが考えられる.

仕事関数は真空準位と材料のフェルミ準位間のエネ ルギー差である.n型半導体であるITOのキャリア生 成機構として,酸素欠損が挙げられる<sup>5)</sup>. ECR プラズ マ処理されたITO薄膜は,図3に示すような酸素ラ ジカル(O<sup>\*</sup>)や酸素分子イオン(O<sup>+</sup>)により膜表面が酸 化され,この酸化された表面層においてキャリア数 の減少が起こり,フェルミ準位も低下する.従って, ECR プラズマ処理によるITO薄膜表面の仕事関数の 増加は,ITO薄膜表面の酸化に起因したフェルミ準位



図6 ITO 薄膜の表面における仕事関数(φ)の基板バ イアス電圧依存性

Substrate bias voltage dependence on work function of ITO thin films.

の低下が原因であると考えられる.

さらに、ITO 薄膜の表面平坦性を評価するために AFM 観察を行った.ITO 薄膜の表面平均粗さ ( $R_a$ )の 基板バイアス電圧依存性の結果を図7に示す.また、 未処理および-60 Vの基板バイアス電圧でプラズマ処 理されたITO 薄膜の AFM イメージを図8に示す.未 処理のITO 薄膜の表面平均粗さは約2 nm(図8(a))で あり、+40 V および+100 V の基板バイアス電圧でプ ラズマ処理した場合、表面平均粗さにほとんど変化 は見られなかった.しかし、-60 V の基板バイアス 電圧でプラズマ処理した場合、表面平均粗さは約0.5 nm(図8(b))まで低減し、平坦性が著しく改善される ことがわかった.これは、図3に示すような窒素原子 イオン ( $N^+$ )、窒素分子イオン ( $N^{2+}$ )、酸素分子イオン ( $O^{2+}$ )により、ITO 薄膜表面においてエッチングが生 じていることが原因であると考えられる.

以上の結果から,本実験で用いた ECR プラズマ処 理によって,ITO 薄膜の表面が改質されたと考えられ る.特に,-60 V の基板バイアス電圧が印加された場 合,ITO 薄膜表面の仕事関数および平坦性が同時に改 善されることを見出した.これは,ITO 薄膜表面にお いて,ECR プラズマ中で生成された酸素や窒素のイ オンによりエッチングが行われ,また酸素の励起種  $(O_2^+, O^*)$ により酸化反応が生じたことが原因である と考えられる.

## 4. まとめ

低エネルギーかつ高密度プラズマを発生できる ECR プラズマを利用して,ITO 薄膜の表面改質を試みた. ITO 薄膜に印加する基板バイアス電圧を変化させてプ ラズマ処理を行い,X線回折,透過および反射スペク



図 7 ITO 薄膜の表面平均粗さ (R<sub>a</sub>) と基板バイアス電 圧の関係

Relationship between surface average roughness of ITO thin films and substrate bias voltage.



図8 未処理および-60Vの基板バイアス電圧でプラ

ズマ処理された ITO 薄膜の AFM イメージ AFM images  $(1 \times 1 \ \mu m^2)$  of (a) ITO as-deposited film and (b) ITO thin film treated at a substrate bias voltage of -60 V in ECR plasma.

トル,そして Van der Pauw 法による比抵抗を評価した結果,ITO 薄膜の結晶構造,光学・電気特性に関して顕著な変化は見られなかった.しかし,ITO 薄膜表面の仕事関数および平均粗さに関しては,プラズマ処理による大きな変化が観察された.特に,-60 Vの基板バイアス電圧が印加された場合,プラズマ中で生成された励起種(酸素や窒素のイオンやラジカル)により,ITO 薄膜表面においてエッチングおよび酸化反応が起こり,表面の仕事関数が約5.2 eV に,そして表面平均粗さが約0.5 nm と同時に改善されることを見出した.表面改質層の経時変化に対する安定性などが今後の課題である.

### 参考文献

- 1) 佐藤佳晴: 有機 EL 材料,シーエムシー出版 (2004) p.164.
- 2) F. Li, H. Tang, J. Shinar, O. Resto and S. Z. Weisz: Appl. Phys. Lett., 70 (1997) p.2741.
- C. C. Wu, C. I. Wu, J. C. Sturm and A. Kahn: Appl. Phys. Lett., 70 (1997) p.1348.
- 4) 中島嘉之: 新素材, 5 (1996) p.37.
- 5) 透明導電膜の技術(改訂第2版),日本学術振興会 透明 酸化物光・電子材料第166委員会編,オーム社(1999) p.75.

本技術論文は、大阪府立産業技術総合研究所の許可なく転載・複写することはできません。