# 輸送包装のための製品衝撃強さ評価法 の実状と新しい提案

# Fact-Finding and New Proposition of Evaluation Method of Mechanical-Shock Fragility of Products for Transport Packaging

| 中嶋 隆勝*            | 寺岸 義春*              |  |
|-------------------|---------------------|--|
| Takamasa Nakajima | Yoshiharu Teragishi |  |
| 高田 利夫*            | 津田 和城*              |  |
| Toshio Takada     | Kazuki Tsuda        |  |
|                   |                     |  |

(2003年7月17日 受理)

キーワード:輸送包装,製品、衝撃強さ、評価法、破損、損傷境界曲線、衝撃応答スペクトル

1. はじめに

製品衝撃強さ試験は、衝撃台上に製品を固定し、台 形波や正弦半波などの形状をした衝撃パルスを加え、 製品損傷の有無を確認する試験であり、製品衝撃強さ 評価法とは、どのような衝撃パルスによって製品が破 損するか否かを把握する技術である.

通常,輸送過程で発生する落下衝撃から製品を保護 するために,緩衝包装が施されるが,製品衝撃強さ評 価は,その緩衝包装設計の目標設定に相当する作業で あり,輸送包装において重要な技術である.また,近 年,携帯電話機やノート型パソコンなど,本来,衝撃に 弱く運搬される機会の少なかった精密機器が携帯化さ れる傾向にある.このような携帯型精密機器の開発にお いても製品衝撃強さ評価は重要な技術であり,その理 論や技術の体系化を進め,広く普及させる必要がある.

本報では,輸送包装および製品設計のための製品衝 撃強さ評価法に関する研究成果として,現在の評価法 の問題点,ならびに,その対策としての新評価法につ いて述べる.

## 2. 製品衝撃強さ評価の実状

現在,製品衝撃強さ評価に関する試験方法は,大き く分けて2種類ある.一つは,JIS C 0041 あるいは IEC 68-2-27 で規定されている方法で,製品(試料) に規定の衝撃パルスを加え,損傷の有無を調べる試験 (以下,合否判定試験と呼ぶ)である.また,もう一 つは,JIS Z 0119およびASTM D 3332に規定され ている方法で,R.E. Newtonによって考案された損 傷境界曲線(以下,DBCと略称する)を用いた評価法 (以下,製品衝撃強さ評価試験と呼ぶ)である<sup>1)</sup>.さら に,これら試験方法の他,製品によっては,規定の衝 撃パルスを製品に加え,製品内部の特定部品に伝搬さ れる加速度を計測する試験(以下,衝撃応答特性試験 と呼ぶ)も行われる.

(1) 合否判定試験(JIS C 0041 および IEC 68-2-27)

試験は,一般に製品規格に規定された衝撃の厳しさ で行われるが,製品規格で衝撃の厳しさが規定されて いない場合は,表1から適当なピーク加速度と作用時 間の組み合わせが選択される.衝撃のピーク加速度と その作用時間が決まれば,その速度変化は衝撃パルス の波形毎に決定される.初期想定として,製品規格の 規定に基づき,供試品の目視によって外観が検査され, 寸法・機能検査が行われる.

次に,製品規格で衝撃方向に関する規定がない場合, 供試品(製品)の互いに直交する三軸の各軸の両方向 にそれぞれ連続する3回(合計18回)の衝撃が加えら れる.その後,再度,製品規格に基づき,供試品の目 視による外観検査および寸法・機能検査が行われ合否 が判定される.

しかし,この方法では,製品の漠然とした衝撃に対 する「強い」,「弱い」を判定できるだけで,どのよう な衝撃に対して製品が破損するかは推定できない.ま

| ピーク加速度 | 公称パルスの      | 速度変化(ΔV)                                           |                                    |                                  |
|--------|-------------|----------------------------------------------------|------------------------------------|----------------------------------|
| (A)    | 作用時間<br>(D) | 正弦半波<br>$\Delta V = 2/\pi \cdot AD \times 10^{-3}$ | のこぎり波<br>∆V=0.5AD×10 <sup>-3</sup> | 台形波<br>∆V=0.9AD×10 <sup>-3</sup> |
| m/s²   | ms          | m/s                                                | m/s                                | m/s                              |
| 50     | 30          | 1.0                                                | —                                  |                                  |
| 150    | 11          | 1.0                                                | 0.8                                | 1.5                              |
| 300    | 18          | 3.4                                                | 2.6                                | 4.8                              |
| 300    | 11          | 2.1                                                | 1.6                                | 2.9                              |
| 300    | 6           | 1.1                                                | 0.9                                | 1.6                              |
| 500    | 11          | 3.4                                                | 2.7                                | 4.9                              |
| 500    | 3           | 0.9                                                | 0.7                                | 1.3                              |
| 1,000  | 11          | 6.9                                                | 5.4                                | 9.7                              |
| 1,000  | 6           | 3.7                                                | 2.9                                | 5.3                              |
| 2,000  | 6           | 7.5                                                | 5.9                                | 10.6                             |
| 2,000  | 3           | 3.7                                                | 2.9                                | 5.3                              |
| 5,000  | 1           | 3.1                                                |                                    |                                  |
| 10,000 | 1           | 6.2                                                | —                                  | —                                |
| 15,000 | 0.5         | 4.7                                                |                                    |                                  |
| 30,000 | 0.2         | 3.7                                                | _                                  |                                  |

表1 衝撃パルスの加速度と作用時間による速度変化(JIS C 0041より抜粋)



速度変化 m/s

図1 製品衝撃強さ試験方法における速度変化と最大整形加速度の関係(JIS Z 0119-2002より抜粋) (損傷領域と非損傷領域の境界を損傷境界曲線(DBC)という.)

た,製品が耐えうる衝撃の範囲を定め,それを保証す ることもできない.

# (2) 製品衝撃強さ評価試験(JIS Z 0119 および ASTM D 3332)

これらの規格には,包装設計のために包装内容品と なる製品の衝撃に対する強度を評価する試験方法が規 定されている.この方法は,R.E.Newtonにより考 案されたDBC理論<sup>1)</sup>に基づいて作成されており,具 体的には,図1に示す二種類の試験,すなわち,製品 の許容速度変化を測定する許容速度変化試験(試験 No.1~6)および許容加速度を測定する許容加速度試 験(試験No.7~12)から構成されており,測定した二 値により,製品に損傷を与える衝撃パルスの範囲(図 中の斜線部分が損傷領域でその他の部分が非損傷領域 である)が把握できるようになっている.ここで,速 度変化とは、衝突速度と反発速度の絶対値の和であり、 落下衝撃の場合は、落下高さと高い相関性がある。

この評価試験方法を用いて行った衝撃試験結果の一 例を表2に示す.また,この結果からJIS Z 0119に 従って導出されるDBCを図2に示す.このDBCは1 自由度のばね質量モデルを用いてR.E.Newtonが導 出した極めて単純な形状となっているが,この評価法 をすべての製品に適用できるとは限らない.

#### (3) 衝撃応答特性試験

ある製品の内部に脆弱な部品が存在し、その部品に 伝搬する加速度が問題となるとき、規定の衝撃パルス を製品に加え、部品に伝搬する加速度を計測する試験 が行われる.この衝撃応答特性試験において、許容以 上の加速度が計測されると、部品支持方法や緩衝材の 使用が再検討され、製品の耐衝撃性の改善策が講じら

表2 衝撃試験結果(JIS Z 0119による)

| 試験  | 加速度  | 速度変化 | 作用時  | 観察結果                       | 方法      |
|-----|------|------|------|----------------------------|---------|
| No. | m/s² | m/s  | 間 ms |                            |         |
| 1   | 1930 | 2.31 | 2.01 | 試料外観に異常なし。                 |         |
| 2   | 2110 | 2.49 | 1.98 | 試料外観に異常なし。                 | 許容速     |
| 3   | 2660 | 2.90 | 1.94 | 部位 A の変形を認めた。              | 度変化     |
| 4   | 2790 | 3.14 | 1.59 | 上記の他、部位 B の変形を認めた。         | <b></b> |
| 5   | 3360 | 3.41 | 1.50 | 部位A,Bの他、試料外観に異常なし。         |         |
| 6   | 228  | 7.41 | 32.9 | 試料外観に異常なし。                 |         |
| 7   | 279  | 7.20 | 26.1 | 試料外観に異常なし。                 | 許容加     |
| 8   | 323  | 7.12 | 22.3 | 部位 C の変形を認めた。              | 速度試     |
| 9   | 376  | 6.88 | 18.4 | 上記の他、                      | 缺       |
|     |      |      |      | <b>部位 A および部位 D の変形を認め</b> |         |
|     |      |      |      | た。                         |         |
| 10  | 419  | 6.93 | 16.8 | 部位A,C,Dの他、試料外観に異常な         |         |
|     |      |      |      | しし。                        |         |

(試験No.1~5まで同一試料を用い, 試料交換後, 試験No.5~10まで同一試料を用いた.)



図2 JIS Z 0119により衝撃試験結果から決定される DBC



れる.

ある製品の内部に脆弱な部品が存在し、その部品に 伝搬する加速度が問題となるとき、規定の衝撃パルス を製品に加え、部品に伝搬する加速度を計測する試験 が行われる.この衝撃応答特性試験において、許容以 上の加速度が計測されると、部品支持方法や緩衝材の 使用が再検討され、製品の耐衝撃性の改善策が講じら れる.

これまでに行った試験結果の一例を図3に示す.通 常,1自由度のばね質量モデルの場合,正弦半波衝撃 パルスに対して伝搬される衝撃の最大加速度は,入力 最大加速度の1.76倍以下であり,また,方形波衝撃パ ルスに対して伝搬される衝撃の最大加速度は入力最大 加速度の2.0倍以下である<sup>2)</sup>.しかし,実際には図3 の結果に示すように3倍以上の応答が発生している場 合がある.したがって,1自由度のばね質量モデルで はすべての製品の衝撃応答を表現することはできない.

## 3. 製品衝撃強さ評価で問題となる現象

R. E. Newton は製品衝撃強さ評価法を構築する際 に,製品モデルとして1自由度ばね質量系を用いてい る. そのモデルよりもやや複雑な製品モデルについて 衝撃応答解析を行い,各製品モデルの衝撃応答スペ クトル(SRS)およびDBCを導出すると,図4および 図5に示すように特徴的なDBCの形状が現れ,R.E. Newtonの評価法で問題点となる現象,すなわち, 「速度変化依存性」および「逆転現象」,「DBC交差現 象」が存在する<sup>2,3)</sup>.図中の〇×はそれぞれ製品の破 損・非破損を表しており,「逆転現象」(低い加速度で 逆に破損する現象)が発生している.これらの現象が 実際の衝撃試験で発生することは,実製品(ミニフロ ッピーディスク)を用いた実験,ならびに,段積み実 験モデル(製品が段積みされた状態を表す)により確 認している<sup>4)</sup>.



図4 SRSが階段状の場合のDBC





図 5



# 4.「逆転現象」発生メカニズムの考察

「逆転現象」発生メカニズムを説明する模式図を 図6に示す.製品に加える方形波衝撃パルス(入力衝 撃パルス)および製品内部の脆弱部品に伝搬する加速 度(衝撃応答)を左側の図で示す.また,左側の図に対 応する衝撃加速度伝達率Trおよび許容加速度をそれ ぞれ中央の図(SRS)内の一点,右側の図(DBC)内の 一点で示す.ここで,Trは最大衝撃応答A<sub>1</sub>を入力最 大加速度A<sub>0</sub>で除した値(Tr=A<sub>1</sub>/A<sub>0</sub>)とし,許容加 速度A<sub>c</sub>は脆弱部品の許容加速度 $a_c$ を伝達率Trで除 した値(A<sub>c</sub>= $a_c$ /Tr)としている.また,SRS横軸の f<sub>c</sub>は固有振動数を示しており,DBC横軸の $\Delta$ Vは許 容加速度と衝撃パルスの作用時間の積( $\Delta$ V=A<sub>c</sub>T<sub>0</sub>) を表している.図中の(a)から(d)の順に,徐々に衝 撃パルスの作用時間T<sub>0</sub>がT<sub>1</sub>,T<sub>2</sub>- $\Delta$ T,T<sub>2</sub>,T<sub>3</sub>と長く なっている.

図 6(a) に示すように、入力衝撃パルスの作用時間 が T<sub>1</sub>の場合、最大衝撃応答は A<sub>1</sub>である.したがって、 伝達率は Tr<sub>1</sub>となり、許容加速度は A<sub>C1</sub>となる.次に、

入力衝撃パルスの作用時間がT₂-ΔTの場合(図 6(b)) について見ると、作用時間が長くなっているにもかか わらず最大衝撃応答はA1であり、作用時間がT1の場 合と同じ値となっている.そのため、対応する伝達率 および許容加速度もそれぞれ Tr<sub>1</sub>, A<sub>c1</sub>となり, SRS もDBCもフラットに変化することがわかる。しかし、入 力衝撃パルスの作用時間がT2と少し長くなれば(図6 (c)), 衝撃応答に二つ目のピークが現れ, 最大衝撃応 答がA2となる.その結果,対応する伝達率および許 容加速度はそれぞれTr<sub>2</sub>,A<sub>c2</sub>となり,SRS および DBCに急激な変化が現れることになる.このとき、  $A_1 < A_2 \circ \sigma \delta c b$ ,  $Tr_1 < Tr_2 < c b$ ,  $A_{c1} > A_{c2} < c b$ る. さらに、 $\Delta V = A_c T_0 \varepsilon$ 考慮すると、 $\Delta V_1 > \Delta V_2$ となることがわかる、同様に、さらに長い作用時間の 入力衝撃パルス(図 6(d))に関する SRS. DBC につ いて考えると、図中の最下段のような形状のSRS. DBC が予想される.このように、衝撃応答に複数の ピークが現れる場合,DBC が複雑な形状となり、低 い加速度で逆に製品が破損してしまう「逆転現象」が 発生する5).



図7 ミニフロッピーディスクの確立 DBC

表3 市場クレームの非再現性

| 破損部品                | <b>家殿室(破損確率 50%)</b> | 市坦(破場) ( 10 / )             |
|---------------------|----------------------|-----------------------------|
|                     |                      |                             |
|                     | での許容加速度              | での許容加速度                     |
| 電源部(Power Unit)     | 約 500m/s²            | 約 250m/s <sup>2</sup> (未対策) |
| 電子基板(Circuit Board) | 約 300m/s²(対策)        | 約 250m/s²(対策済み)             |

### 5.新しい製品衝撃強さ評価法

製品のDBCが図4あるいは図5のような形状をし ていても、十分正確に製品の衝撃強さを評価できるよ うに筆者らは新しい評価法を考案している<sup>6)</sup>. JIS C 0041 および IEC 68-2-27 に対応する新たな試験は、 「保証範囲確認試験」であり、JIS Z 0119および ASTM D 3332に対応する試験は、「DBC 評価法」で ある.前者により、製品が破損しない衝撃パルスの範 囲を保証できるようになった、この保証範囲は、物流 業者および輸送包装設計への要求仕様として用いるこ とができる.後者は、許容加速度試験結果および製品 内破損部品(部位)のSRS データから製品DBC を直 接導出する評価法であり、市販のビデオカセットレコ ーダーを用いた衝撃強さ評価試験による実用性の確認 も行っている<sup>7)</sup>. この評価法により、製品衝撃強さ評 価で問題となる現象を具体的に把握できるようになっ た.

## 6. 確率DBC評価法

市場において、実験室における製品衝撃強さ試験で は破損しなかった製品が、実際には破損したというク レーム(「市場クレームの非再現性」と呼ぶ)が生じる ことがある.それは、部品強度や衝撃伝達率に起因す る製品衝撃強さのばらつきによると考えられる。そこ で、筆者らはそのばらつきが把握できる「確率DBC 評価法」を考案した8).その考案した評価法に従い, ミニフロッピーディスクの衝撃強さを評価した結果, 「市場クレームの非再現性」が見出せ、その発生メカ ニズムについても明らかにできた<sup>8)</sup>. 導出したミニフ ロッピーディスクの確率DBCを図7に示し、この現 象に関連するデータを表3に示す.図および表より, 50%の破損確率では、電源部は、電子基板部よりも 明らかに強いが、0.1%の破損確率では、大きな違い が認められない. すなわち, 本結果は, 実験室では破 損しない電源部が、市場では破損する可能性があるこ とを示している.

### 7. 「DBC評価法」類型の考案および体系化

上記のDBC評価法では,製品衝撃強さ評価の理論的 厳密さを追求することはできるが,企業の品質管理を 行う現場での利便性が悪ければ,本評価法を普及させ ることはできない.そのため,各試験の目的,使用でき る機器などの制約を考慮して,5種類のDBC評価法の 類型を考案している.また,各評価法の特徴および必 要な機器などの整理,試験方法の体系化も図った<sup>9)</sup>.

# 8.おわりに

輸送包装および製品設計のための製品衝撃強さ評価 法に関する研究を行い,現在の評価法の問題点を明ら かにし,その対策として新評価法を提案した.これら の研究成果は,輸送包装や製品設計に生かされ,輸送 包装技術の高度化に貢献できる.

#### 参考文献

- R.E.Newton: Fragility Assessment Theory and Test Procedure -, U.S. Naval Post Graduate School. Now available from Lansmont Corporation, 17 Mandecille Ce., Monterey, CA 93940, <u>www.lansmont.com</u>.
- 2)中嶋隆勝,斎藤勝彦,久保雅義,寺岸義春:日本包 装学会誌,8,123(1999)
- 3)中嶋隆勝,斎藤勝彦,久保雅義,寺岸義春:日本包 装学会誌,9,33 (2000)
- 4)中嶋隆勝,斎藤勝彦,寺岸義春:日本機械学会論文 集(C編),67,539 (2002)
- 5) 中嶋隆勝: 神戸商船大学学位論文, 35 (2003)
- 6)中嶋隆勝,斎藤勝彦,寺岸義春:日本機械学会論文 集(C編), 67, 3924 (2001)
- 7)中嶋隆勝,斎藤勝彦,寺岸義春:日本包装学会誌,11,115 (2002)
- 8)中嶋隆勝,斎藤勝彦,寺岸義春:日本航海学会論文 集,63 (2001)
- 9)中嶋隆勝, 斎藤勝彦, 寺岸義春: 日本包装学会誌,11, 217 (2002)