

# Technical Sheet

No.07003

# nm オーダの計測を補償する環境一定制御チャンバーの開発

キーワード:レーザ干渉測長器、環境補償、温度、湿度、気圧、超精密加工

#### はじめに

レーザ干渉測長器(以後『レーザ測長器』 と略す)は、超高精度・非接触測定・設置の 簡便さといった特徴を活かし、超精密ステー ジの移動量測定や位置制御に広く利用されて います。一方で、レーザ測長器の基準となる 光の波長は、真空中では一定ですが、大気中 では空気の屈折率に依存して変化します。こ のため、大気中での計測では、何らかの環境 補償を講じない限り測長誤差が発生します¹)。

屈折率変化の影響は予想以上に大きく、レーザ測長器を位置決めに利用した加工機の場合、半日以上の連続加工を実施した際に、レーザ測長誤差は、熱変形以上に形状誤差を生じさせる要因となり、その大きさは数百 nm~1μm 超にも達します。

当研究所では、このようなレーザ測長誤差を極力排除し、正確な位置決めを実現するために、超精密加工機用の環境一定制御チャンバーを開発しました。空気屈折率は環境中の温度、湿度、気圧によって決まることから¹)、本チャンバーは温度、湿度、気圧を一定に管理することでレーザ測長誤差を抑える装置としました。ここでは、本チャンバーの構造を説明するとともに、制御性能やチャンバー内での加工実験の結果について解説します。

### 環境一定制御チャンバーの仕様と構造

表 1 にチャンバーの仕様を示します。この 仕様を満足すれば、加工機の位置決め誤差は 100nm 以下になります。

図1は環境一定制御チャンバー設置時の状態を示した模式図です。給気用送風機 から取り込まれた外気は、調整バルブ(モータダンパー) を経てチャンバー用空調機 に吸い込まれ温度と湿度が管理されます。温・湿度が調整された空気は、2つのエアーダクトと を介し加工機を覆うエンクロージャの真

表 1 環境一定制御チャンバーの仕様

| 制御項目   | 絶対圧力、空調(温度、湿度)          |
|--------|-------------------------|
| 圧力制御方式 | 陰・陽圧混在型の絶対圧力制御(PID)     |
| 制御圧力範囲 | 980~1025hPa、内外差圧±20hPa  |
| 制御圧力精度 | PV=0.4hPa 以内            |
| 空調制御方式 | 再加熱・再加湿方式(PID)          |
| 制御温度精度 | PV=0.2 以内(加工機内では±0.06 ) |
| 制御湿度精度 | PV=4% 以内                |

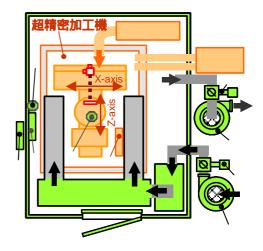



図1 環境一定制御チャンバーの構成

上に吹き出します。吹出し空気の一部は空調機 に回収されますが、最終的に送風機 によってチャンバーの外へ排出されます。温・湿度センサー は空調機 の制御用でチャンバー中央付近の天井に、気圧制御用センサーはチャンバーの側壁に設置しています。

チャンバー内部の温・湿度の管理は、再加熱・再加湿方式の PID 制御で行っています。 チャンバー内外の差圧の大きさは、供給空気と排出空気との流量差で定まりますので、気圧の制御は、あらかじめ給気側・排気側双方の最小風量を定め、内部が陰圧(陽圧)時には給気(排気)側から最小風量で空気を送りながら、排気(給気)側の送風機回転数とバルブ開度を調節する PID 制御としました。

チャンバーの入り口は二重扉 とし、二重 扉の中間層の気圧が、チャンバー内部が陰圧 時にはチャンバー内部と、逆に陽圧時にはチャンバーの外側と同じになる構造としました。このような機構は、気圧制御時の差圧による扉の突然の開口などを防止するためです。チャンバーの内外には、温度、湿度、気圧を監視できる環境モニター と を配置しました。

## 環境一定制御チャンバーの有効性評価

本チャンバーの有効性は、チャンバー内で 実施したラスター切削実験で評価しました。

ラスター切削は、図2に示すように、Y軸方向を固定した XZ 面内で、回転工具を2軸(X軸と Z軸)同時制御することで1回の切削加工を実行し、これをY軸方向に繰り返すことで自由曲面を創成する方法です。

図 3 (a)、(b)に加工面 Y 軸方向の形状誤差を示します。同図(a)は気圧を制御していない場合、(b)は気圧を陰圧で一定に制御した場合です。両図には、チャンバー内外の気圧変化  $P_i$ 、 $P_o$  と、形状誤差の推定値 $\delta E$  (予測される位置決め誤差 $\delta L$  をもとに計算 )を併記しました。

図3より、温・湿度の制御精度、チャンバー 使用時の気圧制御精度は、表1の仕様を十分 満足する結果となりました。

気圧制御のない図3(a)の場合、PV 値で505nm の大きな形状誤差が発生しています。この形状誤差は、実測値と推定値がほぼ一致

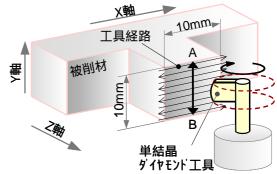
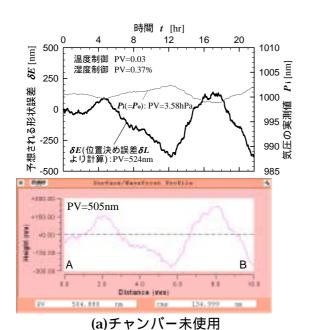



図2 ラスター切削加工の概念図


することからも明らかなように、環境変化にともなう位置決め誤差 $\delta L$  が主要因となっています。一方、気圧を制御した図3(b) では、気圧変動が PV 値で0.19hPa 以内に管理され、形状誤差は PV 値で91nm になっており、本来予想される形状誤差 293nm に比べ大幅に低減された結果となっています。

#### まとめ

以上のように、今回開発した環境一定制御 チャンバーは、実際の加工状況においても有 効に機能し、長時間にわたり安定した加工環 境を提供できます。本技術に関しご興味のあ る方は是非ご相談下さい。

#### 参考文献

1) 山口勝己:大阪府立産業技術総合研究所 Technical Sheet No.05001



時間 *t* [hr] 16 500 1025 [mm] 温度制御 PV=0.04 湿度制御 PV=1.39%  $\mathcal{E}$ 1020 250 Po: PV=6.18hPa 予想される形状誤差 1015 0 1010 1005 円 -250 位置決め誤差& より計算):PV=293nm -500 1000 PV=91nm В (b)チャンバー使用

図3 環境一定制御チャンバーの有効性

作成者 機械金属部 加工成形系 山口 勝己 Phone:0725-51-2561

発行日 2007年9月1日