一平成 24 年度 一

業務年報

人

基本	は理念・行動指針
1.	中期目標・年度計画と業務実績の評価結果
	(1) 第1期中期目標(概要)
	(2) 平成 24 年度年度計画(概要)
	(3) 平成 24 年度の主な取組と実績
	(4) 平成 24 年度の業務実績の評価結果
2.	組織と業務 11
	(1) 組織と業務 11
	(2) 職員の配置 12
3.	研究業務 14
	(1) 特別研究 14
	(2) プロジェクト研究 19
	(3) 発展研究 19
	(4) 基盤研究 19
	(5) 共同研究 21
	(6) 研究発表
	(A) 口頭発表 22
	(B) 論文発表 34
	(7) 外部からの研究員等の受け入れ 37
	(8) 受賞 37
4.	技術支援業務 38
	(1) 受託研究 38
	(2) 依頼試験 39
	(3) 施設・設備の開放 41
	(4) 開放研究室の利用 44
5.	指導普及業務
	(1) 技術指導 45
	(A) 指導相談 45
	(B) 現地相談 48
	(C) 技術評価 48
	(2) 技術普及
	(A) 実用化指導 49
	(B) 研究発表会 49
	(a) 第1回合同発表会 49
	(b) 第2回合同発表会 49
	(C) セミナー・講習会 50
	(D) 機器利用技術講習会 55
	(E) 依頼試験技術講習会 55
	(3) 人材育成 55
	(A) 技術研修生 55
	(a) 一般型技術者研修 55
	(b) オーダーメイド型技術者研修 55
	(B) 学生の技術指導 55
	(4) 情報の発信 56
	(A) 情報の提供 56
	(a) 刊行物 56

		(b) 出版物	56
		(c) インターネットの活用	57
		(B) 図書資料の整備	57
		(C) 展示会・相談会	57
		(D) 新聞掲載・テレビ放映	58
6.	技術	5交流業務	59
	(1)	団体・研究会への支援	59
		職員の派遣	60
		(A) 講師の派遣	60
		(B) 役員・委員・指導員の派遣	65
		(C) 研究事業への協力	68
		(D) ものづくり B2B ネットワークとの連携	68
	(3)	国内研究者等の招聘	68
		大学との連携	69
	(5)	Last that a state of	69
	(-)	大阪府立大学との包括連携協定	69
		大阪市立工業研究所との連携	70
		イベント	70
	(0)	(A) 府民開放	70 70
		(B) 新生! 産技研テクノフェア	
		(C) 「地域イノベーション創出のための	71
		公設試験研究機関の役割等に関する調査」報告会	71
	(9)	見学者	71
7.	職員	らいでは、一般では、100mmである。	72
		、	74
•		出願した産業財産権	74
		権利が確定した産業財産権	74
		権利を放棄した産業財産権	75
		所有産業財産権の実施状況	75
		出願中産業財産権の実施状況	76
		承継した著作物	76
		著作物の実施状況	76 76
		イン・イン・	76 76
		- アリハリの天祀代記	
		. 別有Amogy/座権 - 見衣	77
0		通常	83
ο.		理事会	86
		理事会	86
			86
		業務運営会議	86
		大阪府地方独立行政法人評価委員会	86
		大阪市立工業研究所との統合に向けた動き	86
9.		, destant the state of the stat	88
		収入・支出	88
	(2)	設備	89
		(A) 主要新設機器	89
		(B) 主要設備機器	89
		沿革	95
	(4)	土地および建物	96

地方独立行政法人 大阪府立産業技術総合研究所

【基本理念】

私たちは、産業技術の研究・支援を推進し、企業と共に新しい 価値を創造し、世界に冠たる大阪産業の発展に貢献します。

【行動指針】

◆技術に挑む姿勢を貫きます

私たちは、企業の抱える技術的課題の解決や社会の求める技術の開発を目指し、技術に挑む姿勢を貫きます。

◆新たな価値を提供します

私たちは、大阪産業の発展に関わるすべての人と組織を顧客としてとらえ、企業の現場を知り、顧客を理解して、新たな価値を提供します。

◆自己の研鑽に努めます

私たちは、産業技術の研究・支援のプロフェッショナルとして、高い目標をもって 自己の研鑽に努めます。

◆組織の力を発揮します

私たちは、地方独立行政法人大阪府立産業技術総合研究所の一員として、互いの信頼関係のもと、人を育て、人を活かした活力あふれる風土をつくり、組織の力を発揮します。

◆社会に貢献します

私たちは、公的機関としての責務と使命を果たし、技術で社会に貢献します。

1. 中期目標・年度計画と業務実績の評価結果

(1)第1期中期目標(概要)

前文

- 大阪のものづくり中小企業は、大阪産業の基盤として国際競争に打ち勝ち、大阪産業・経済を牽引していかなければならない。
- 産技研は、ものづくり中小企業の「テクノ・パートナー」として、基盤技術の高度化や信頼性の実証による売れる製品づくり、 研究開発成果の技術移転など、従来の機能をより強化するとともに、企業が付加価値の高い技術や新たな市場開拓を可能 とする製品を数多く生み出すため、環境・新エネルギー等の成長分野への参入促進に向けた取組や企業間連携、産学官連 携などのつなぐ取組を実現していく。
- 「攻め」の事業展開を旨とし、企業ニーズに応える質の高いサービスを積極的に提案し、顧客の拡大を実現する。その結果 得られる増収を支援機能の強化に投資し、企業に還元する好循環の運営をめざす。
- 大阪府市統合本部において、産技研と地方独立行政法人大阪市立工業研究所(以下「市工研」)は、両研究所の強みと特徴を生かし、工業技術とものづくりを支える知と技術の支援拠点「スーパー公設試」を目指すという方向性が示された。これを受けて、経営戦略の一体化や業務プロセスの共通化、研究開発及び技術支援サービスにおける連携事業等を順次実施する等、法人の統合に向けた取組を進めていく。

第1 中期目標の期間

平成24年4月1日から平成28年3月31日までの4年間

第2 住民に対して提供するサービスその他の業務の質の向上に関する事項

1 「提案型」の企業支援と「つなぐ」取組の推進

受け身の支援スタイルではなく、組織として積極的に最大限の支援、企業の役に立つ提案を行う。

- 組織として顧客対応するため、組織体制の整備、データベースの再構築、人材育成を実施
- 職員が企業に出かける機会を飛躍的に拡大するため、意識改革、環境整備を実施
- より良いサービスを提供するため、マーケティング・リサーチの実施や企業等の意見を聴く場を設置
- 外部機関との連携による支援や外部機関へのコーディネートなど、つなぐ取組を推進

2 技術支援機能の強化

企業の技術革新や製品開発をサポートしていくため、ニーズの高い分野、高い成長が期待される分野の技術支援機能を強化する。

- 〇 新たなサービスの実施
- 〇 既存サービスの充実
- 企業の新技術・製品開発のニーズに応える設備機器の整備
- 基盤技術や成長分野の技術者育成等
- インキュベーション施設を活用した起業家・中小企業等への成長支援
- 技術支援のフォローアップ

3 研究開発の推進

戦略的なテーマに絞って研究開発を行う。より大きな成果を得るため、企業・大学との共同研究、産学官連携研究を進める。中小企業が共同研究に参画することや研究開発成果を活用することを提案する。

- 中小企業単独では取り組むことが困難な技術課題、重要な政策課題の解決に資する戦略的なテーマに絞って実施
- 共同研究、産官学連携研究等を企業に提案
- 中小企業に研究開発成果を情報発信し活用を提案
- 大学の先端研究の成果を中小企業へ橋渡し

4 連携の促進

技術分野以外の多様な企業ニーズにも応えるため、外部機関との連携を進め、ワンストップ機能を向上させる。

- 行政機関、金融機関等との連携による多様な支援
- 〇 産学官連携の推進
- 〇 広域連携の着実な推進
- 〇 地域との連携と社会貢献

5 市工研との統合に向けた取組の推進

○ 統合によるマネジメントの一元化を通じた効果的な事業展開と効率的な運営を見据え、法人統合に先行して経営戦略の一体化や業務プロセスの共通化、研究開発、技術支援サービス及び情報発信等における連携事業を実施する等、機能面の実質的な統合と事業の効率化を図る。

第3 業務運営の改善及び効率化に関する事項

1 自主的、自律的な組織運営

- 組織マネジメントを行い、業務の成果を検証し、改善を行うPDCAサイクルを実行
- 予算執行や人事制度を効果的に運用
- 積極的な営業展開を実現するための顧客サービス部門を新設や、社会経済情勢の変化や重要性・緊急性の高い政 策課題に迅速に対応する組織体制を構築

2 職場、職員の士気を高め、職員の能力を向上させる取組

- インセンティブの制度化
- 受け身の業務執行から積極的な営業展開に向け、職員の意識改革を図り、能力と知識を向上 外部機関との交流を活発化

3 業務の効率化

○ 絶えず業務改善に取り組み、効率的・効果的に業務を遂行

第4 財務内容の改善に関する事項

1 事業収入の確保

○ 顧客の拡大により増加した収入を、支援機能の強化に投資し企業に還元する好循環の運営をめざす 利用料金は企業ニーズを踏まえ受益者負担を前提に設定、法人化前の料金水準よりも高くなる場合には厳しい経 営環境にある中小企業について政策的に引下げ

2 外部資金の獲得

○ 競争的研究資金等外部資金の獲得に向けて積極的に取り組む

3 予算の効果的な執行等

○ 企業ニーズに柔軟に対応するため、効果的に予算執行や契約を運用 予算配分を重点化する仕組みを創設

第5 その他業務運営に関する重要事項

<u>1 施設の有効活用等</u>

- 建物は改修計画を策定し、計画的に整備、土地・建物は適正に管理し有効活用
- 顧客データベースの情報、マーケティング・リサーチ等による設備機器を整備

2 法令遵守に向けた取組

○ コンプライアンスの徹底、情報公開、個人情報保護と情報セキュリティ等に取り組む

(2) 平成24年度年度計画(概要)

【基本的な考え方】

- ◆ 「提案する」、「つなぐ」を基本姿勢とし、技術支援、研究開発、連携等、企業の課題解決に最適なサービスを積極的に 実施
- ◆ 「売れる製品づくり」につなげるため、新たなサービスの実施や既存サービスの充実、設備機器の整備を推進
- ◆ 自主的、自律的に組織運営を行い、収入の確保や財務の効率化に取り組む

第1 住民に対して提供するサービスその他の業務の質の向上に関する目標を達成するためとるべき措置

1 「提案型」の企業支援と「つなぐ」取組の推進

- (1)「提案型」の企業支援による支援の強化
 - 提案型の企業支援の統一窓口、顧客対応の司令塔として「顧客サービスセンター(仮称)」を新設
 - 顧客データベースを活用してサービスを提供
 - 企業の製造現場に出かける機会を増やすとともに、未利用企業を積極的に訪問
 - マーケティング・リサーチの実施、企業・業界団体、経営者・技術者等との交流や情報交換を推進

(2)「つなぐ」取組の推進

- 支援機関ごとの強みなどを整理、検索できるデータベースを整備
- マッチング支援に強い「ものづくりビジネスセンター大阪(MOBIO)」と技術支援に強い産技研による総合的な支援、高度な研究が得意な大学と基盤技術に強い産技研による技術移転等を実施
- 「産技研顧客コミュニケーションサイト(仮称)」を構築

2 技術支援機能の強化

(1) 新たなサービスの実施

- 依頼試験・・・解説付き報告書を発行、依頼試験(オーダーメイド対応)を実施
- 設備機器開放・インターネットによる予約状況確認サービス、利用時間延長の具体化を推進
- 受託研究・・・簡易受託研究を創設
- 技術者育成・・オーダーメイド型技術者育成事業を創設

(2) 既存サービスの充実

- 技術相談・・・「顧客サービスセンター(仮称)」による総合的な相談、現地相談等の実施
- 依頼試験・・・信頼性の高い試験結果を提供
- 設備機器開放・予約・受入体制等を改善、機器利用技術講習会の開催等
- 受託研究・・・社会的ニーズの高い新エネ等、高度な受託研究に取組。委託企業への職員派遣を実施。

(3) 企業の新技術・製品開発のニーズに応える設備機器の整備

- 利用計画、顧客データベースの情報、マーケティング・リサーチに基づき設備機器を整備
- 機器センターを設置しレベルに応じた一連の機器の使用を提案。
- 〇 機器利用技術講習会を開催

(4) 基盤技術や成長分野の技術者育成等

- 技術講習会を開催し、ものづくり基盤技術の技術者を育成。外部機関と連携して高度専門人材を育成
- (5) インキュベーション施設を活用した起業家・中小企業等への成長支援
 - 設備機器の活用や専門職員による技術支援等、きめ細かくサポートを実施
- (6) 技術支援のフォローアップ
 - 受託研究、共同研究後の企業の実用化・製品化等をフォローアップ

3 研究開発の推進

【重点的に取り組む研究開発分野】

高度基盤技術、ナノテク新製造技術、新エネ関連技術、環境対応技術、生活支援型産業関連技術

萌芽的な「基盤研究」と、実用化を目指す「発展研究」の2つに分類。「研究テーマ選定評価検討会(仮称)」においてプロジェクト研究や発展研究のテーマ決定と研究評価を実施。

(1) 戦略的テーマに関する研究開発

- 社会ニーズや行政ニーズに対応する「プロジェクト研究」を創設
- 研究テーマ等を企業等にアピール、マッチング等に取り組む「提案型成果普及事業(仮称)」を創設

(2) 研究開発成果の提案と技術移転

- 顧客データベースにより、研究開発成果の活用が想定される企業を抽出し、個別に技術移転
- 研究発表会の開催等により情報発信
- 大学の先端研究の成果を、技術支援のノウハウを活かして、中小企業へ技術移転
- 府立大学との包括連携協定のもと、共同研究を実施し、研究開発成果を企業の課題解決に活用

4 連携の促進

(1) 行政機関、金融機関等との連携による多様な支援

○ 大阪府、MOBIO、産業デザインセンター、B2Bネットワーク、金融機関、商工会議所・商工会、大阪市立工業研究所と連携した企業支援。金融機関への訪問活動を実施。

(2) 産学官連携の推進

○ 企業、大学等とのネットワークづくり、データベース充実に努力。府立大学と包括連携協定で共同事業実施

(3) 広域連携の着実な推進

○ 関西広域連合参加府県の試験研究機関と情報活用、人材交流、設備機器の共同利用の面で連携

(4) 地域との連携と社会貢献

○ テクノステージ和泉の企業や南大阪職業技術専門校との連携したセミナーや、小中高校生を対象にしたイベントを開催

第2 業務運営の改善及び効率化に関する目標を達成するためとるべき措置

1 自主的、自律的な組織運営

- 経営企画室を新設し、自主的・自律的に組織マネジメント
- 「顧客サービスセンター(仮称)」と各科が共同しフォローアップに努め、新たな提案、課題解決につなぐ
- 技術支援部門に「科」を設置、新エネルギー等研究分野を横断的技術課題は、プロジェクトチームで対応

2 職場、職員の士気を高め、職員の能力を向上させる取組

- 職員のインセンティブ制度を創設
- 職員を大学、企業、研究機関等に派遣する制度設計に向け関係機関と協議。特に、関西広域連合参加府県の試験研究機関との人材交流について具体化を推進。

3 業務の効率化

財務会計等のシステムを構築。物品購入の決裁権限委譲や書類簡素化。総務事務等の一部外部委託を検討。

第3 財務内容の改善に関する目標を達成するためとるべき措置

1 事業収入の確保

○ 提案型企業支援、企業の声に応えるサービスの実現や利便性の向上等により、顧客を拡大し収入増加 利用料金は企業ニーズ等を踏まえ受益者負担を前提に設定するとともに、中小企業に配慮した料金設定

2 外部資金の獲得

○ 提案公募型研究等について積極的に応募。所内のサポート体制を具体化し採択率向上を目指す。

3 予算の効果的な執行等

○ 効果的な予算執行や複数年度契約。予算に理事長裁量枠を設け、研究予算の重点配分等を実施

第4 予算(人件費の見積りを含む。)、収支計画及び資金計画

第5 短期借入金の限度額

第6 重要な財産を譲渡し、又は担保に供する計画

第7 剰余金の使途

第8 その他業務運営に関する重要事項の目標を達成するためとるべき措置

第9 大阪府地方独立行政法人法施行細則第4条で定める事項

(3) 平成24年度の主な取組と実績

- 1) 主な取組(◎新規の取組)
 - 1. 技術支援機能の強化
 - (1) 提案型の企業支援
 - ◎顧客サービスセンターを新設し、サービス体制を強化
 - ○出かける活動の推進
 - ◎簡易受託研究制度など新たなサービス
 - ○既存サービスの充実

(技術相談、依頼試験、設備機器開放、受託研究等)

- (2) 研究開発の推進
- ◎中期計画に定める5分野に重点化 (ナノテク、新エネ、生活支援型産業など)
- ◎全所体制でプロジェクト研究を実施

- 2. 「つなぐ」取組の推進
 - ◎「顧客コミュニケーションサイト」を構築
 - ○行政機関、金融機関等との連携 (東大阪市、堺市との包括連携協定締結)
- 3. 自主的、自律的な組織運営
 - ◎経営企画室を新設して、マネジメント機能を強化
 - ○事業収入の確保、外部資金の獲得、予算の効果的執行

2) 中期計画に定める数値目標の年度目標と実績

	年度	H24	H23		年度	H24	H23
	目標値	実績値	実績値		目標値	実績値	実績値
①現地相談件数	400	509	152	⑥団体支援件数(講師派遣等)	400	550	398
②技術相談件数	57, 000	72, 030	63, 316	⑦講習会等情報 発信件数	30	49	31
③依頼試験等の件数	13, 700	13, 769	14, 127	⑧学会等での発表件数	239	322	215
④受託研究件数	47	134	37	⑨論文等投稿件数	49	76	49
⑤機器利用技術講習会	180	226	119	⑩競争的研究資金応募数	27	40	26
開催件数							

【注】上表の実績値は、複数の項目の件数を合計したものであり、次章以降に掲載している件数と一致しないものがある。

(4) 平成24年度の業務実績の評価結果

産技研の各事業年度の業務実績については、地方独立行政法人法に基づき、大阪府地方独立行政法人大阪府立産業技術総合研究所評価委員会(以下、「評価委員会」)による評価を受けることとなっており、平成25年8月22日に開催された平成25年第3回評価委員会において、平成24事業年度の業務実績の評価結果が次のとおり決定された。

全体評価 「全体として年度計画及び中期計画のとおりに進捗している」

○ 企業の課題を把握・支援、質の高い新たなサービスの充実、組織運営体制強化、財務内容の改善等、を着実に取組み、4つの 大項目全てにおいて、A評価(「計画どおり」 進捗している) が妥当であることを判断した。

○委員会コメント

「地方独立行政法人化初年度は、顧客の視点に立ち、手続きが簡便で迅速に対応できる「簡易受託研究」の創設や、現地相談など出かける活動を推進するなど、理事長のリーダーシップのもと、法人化のメリットを最大限に活かして取り組んでおり、今後ともこれらの取組を更に充実させるとともに、企業ニーズの的確な把握と、それらへの対応に努め、大阪の産業の発展に寄与することを期待する。」

住民に対して提供するサービスその他の 業務の質の向上	S	Α	В	С	D	企業ニーズに的確に応えた手続が簡便で迅速に対応できる新たなサービスとして 簡易受託研究の創設、現地相談として企業に出かける機会を増やして顧客との信頼関 係を築き、顧客拡大につなげた。 また、利用者から要望のあった開放機器利用時間延長サービスについて関西圏の公 設式では初の試みとして実施する体制を整えるなど、サービス向上に取り組み中期計 画を着実に進捗していることが認められた。
業務運営の改善及び効率化	()	А	В	С	D	経営企画室を設置し、経営会議・業務運営会議等の法人運営の重要会議を運営して 自主的・自律的な組織マネジメントを進めた。 技術支援部門では、「科」を設置して組織をフラット化しプロジェクト研究等に研究科横断で取り組むなど組織運営体制の強化しており、計画どおり進捗していると認められた。
財務内容の改善	S	А	В	С	D	自己収入増加に向けた各種の取組、外部資金獲得のためのサポート体制を整備するなどして、前年度に比べ約1億1,300万円の収入増。 支出面では予算の効率的・効果的執行などを行い、約2億7,800万円の純利益を計上し、財務内容の改善を着実に進める取組みも見られ、計画どおり進捗していると認められた。

その他業務運営に関する重要事項	S	А	В	С	О	空き実験室の再配置、活用されていなかった食堂の営業再開など、既存施設の有効活用と併せて顧客の利便性を向上させた。また、安全衛生委員会を設置し所内の良好かつ安全な利用環境の確保に努めるとともに、コンプライアンスの徹底として法人独自で倫理行動規範や禁止行為等を盛り込んだ冷田規定を制度する別がよれていると認められた。
-----------------	---	---	---	---	---	--

底として法人独自で倫理行動規範や禁止行為等を盛り込 んだ倫理規定を制定する取組みが行われ、計画どおり進捗していると認められた

〇 評価区分

S:特筆すべき進捗状況 A:計画どおり B:おおむね計画どおり

C: やや遅れている D: 重大な改善事項あり

「住民に対して提供するサービスその他の業務の質の向上」に関する大項目評価

評価結果と判断理由

- ① 簡易受託研究は、手続が簡便で迅速に対応できるものであり、機動性を向上させて企業ニーズに的確に応えた新た なサービスとして設けられ、その実施件数は想定を大幅に上回るとともに収益確保にも寄与した。
 - ② 企業に出かける機会を増やして顧客との信頼関係を築き、顧客拡大につなげた現地相談は、過去の実績件数を大 きく上回り、年度計画の目標値も上回った。
 - ③ 業界団体等への情報発信・協力件数は、府立産技研が業界団体等から信頼されている成果指標となり、前年度比・ 目標値ともに上回った。
 - ④ 利用者から要望のあった開放機器利用時間延長サービスについては、関西圏の公設試では初の試みとして実施で きる体制を整え、サービス向上に取り組んだ。
 - ⑤ 技術支援の基本である技術相談は、府立産技研の技術支援機能が顧客から信頼されていることを表す指標であり、 年度計画の目標値及び前年度値をともに上回った。
 - ⑥ 的確に企業ニーズを把握し、顧客目線で受託研究を実施し、製品化・実用化につなげるとともに年度計画の目標 値を上回った。
 - ⑦ 企業の新技術・製品開発のニーズに応える設備機器の整備に努めるとともに、機器利用者講習会を積極的に開催 し、機器開放による収入も増加させた。
 - ② プロジェクト研究を創設し、テーマを戦略的に決定。また、競争的研究資金への応募及び採択率ともに前年度実 績値・目標値を上回った。
 - ③ 講習会等での情報発信、学会等での発表、論文等への投稿等いずれの実績も、前年度実績・目標値を上回った。

など、18 項目中9項目について、目標以上の成果を上げているほか、他の項目においても中期計画を着実に進捗し ていることから、大項目評価としては、A評価(「計画どおり進捗」している)が妥当であると判断した。

	S	Α	В	С	D
評価結果	特筆すべき 進捗状況	計画どおり	おおむね計画ど おり	やや遅れている	重大な改善事項 あり

「業務運営の改善及び効率化」に関する大項目評価

評価結果と判断理由

○ 経営企画室を設置し、理事会・経営会議・業務運営会議・四半期業務実績報告会等の法人運営の重要会議を運営し、 自主的・自律的な組織マネジメントを進めた。

技術支援部門では、「科」を設置して組織をフラット化し、プロジェクト研究等に研究科横断で取り組むなど、組織運 営体制の強化し、法人独自の財務会計、人事給与システムを稼働させ、事務処理の簡素化・効率化を推進しており、大 項目評価としては、A評価(「計画どおり進捗」している)が妥当であると判断した。

	, · ·	D	C	ן ט ן
筆すべき 進歩状況	計画どおり	おおむね計画 どおり	やや遅れてい る	重大な改善事 項あり

3 「財務内容の改善」に関する大項目評価

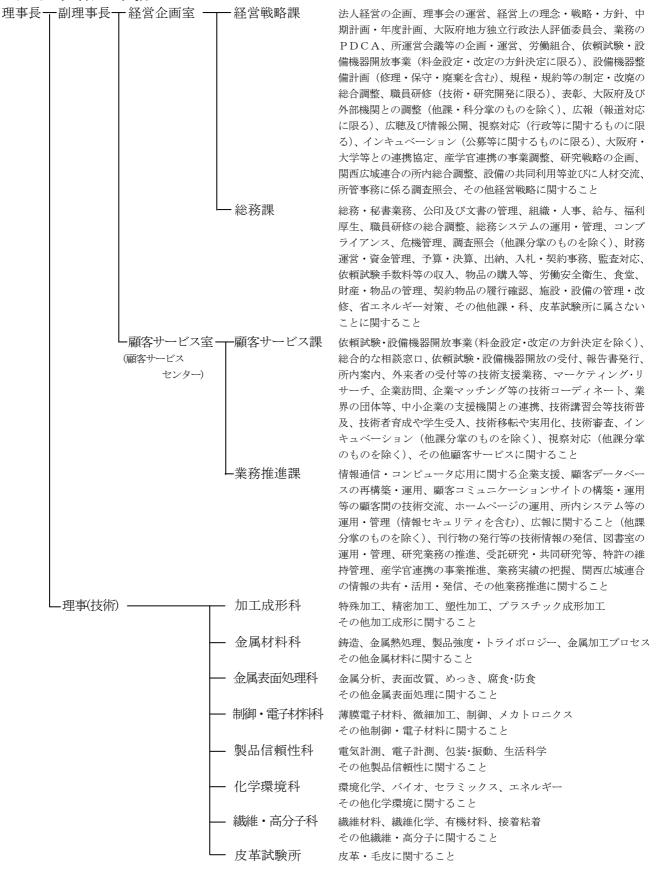
評価結果と判断理由

〇 自己収入増加に向けた各種の取組、外部資金獲得のために応募をサポートする体制整備、自己収入に繋がる様々な事業がいずれも目標値を上回る実績をあげた結果、前年度比約1億1,300万円の収入増、支出面での予算の効率的・効果的執行により約2億7,800万円の純利益を計上し、財務内容の改善を着実に進めていることから、大項目評価としては、A評価(「計画どおり進捗」している)が妥当であると判断した。

	S	Α	В	С	О
評価結果	特筆すべき 進捗状況	計画どおり	おおむね計画 どおり	やや遅れてい る	重大な改善事 項あり

4 「その他業務運営に関する重要事項」に関する大項目評価

評価結果と判断理由


○ 今後の利活用を見通した空き実験室の再配置、低利用用地の活用方法について、組織的に検討する施設有効活用検討 部会の設置、活用されていなかった食堂スペースについて事業者を公募して営業を開始など、既存施設の有効活用と併せて顧客の利便性を向上させた。

また、安全衛生委員会を設置し、所内の良好かつ安全な利用環境の確保に努めるとともに、コンプライアンスの徹底として法人独自で倫理行動規範や禁止行為等を盛り込んだ倫理規定を制定するなど、業務運営に関する重要事項について計画どおり進めており、大項目評価としては、A評価(「計画どおり進捗」している)が妥当であると判断した。

評価結果特筆すべき 進捗状況計画どおりおおむね計画 どおりやや遅れてい重大な改善事 項あり		S	Α	В	С	D
	評価結果		計画どおり		7	

2. 組織と業務

(1)組織と業務

(2) 職員の配置

平成25年3月31日現在

【経営企画室】 室長 ●野坂 俊紀

【32: 事 $\bigcirc 2$ ●3 事▲ 4 $\bigcirc 1$ 事 $\bigcirc 9$ 事 $\bigcirc 6$ 主事2 研究員5 】(兼: $\bigcirc 1$) 【(人)3 (非):1 (兼)(非):1

【経営戦略課】課長 ●森田 均

◇島田 重行 ●浅尾 勝哉 ▲梅田 一也 ▲赤坂 俊夫 ○(リ)久米 秀樹 △西井 秀孝 松岡 喬森 隆志 林 彰平 田中 剛 木下 貴広 新井 美絵

【総務課】課長 ◇南 洋寿(兼マネージャー)

[総務グループ] ▲加納 昇二 △大西 和広 △江川 定子 △塩野 智子 △小林 仁 △上原 徹五 △中島 治行 ▽庄司 泉 ▽小山田 稔 ▽安陵 武文 藤岡 千里 ▽大野 榮子(皮革) (人)西原 節子 (人)小柳 満代 佛渡邉 久子(事務補助)

[管理グループ] ▲篠森 周治 △渡辺 実 △中尾 貴弘 ▽田中 幸 ▽西谷 次夫 (兼)▽堀内 葉子 (人)黒田 香代美 (兼)崩小田 正明(技術専門スタッフ)

【顧客サービス室】 室長 ●井上 幸二

◇南 洋寿(マネージャー兼総務課長) ●山口 勝己(マネージャー兼加工成形科長)

【20:●4 ○9 事▽1 再雇用○2 再雇用 4】(兼:事◇1 ●1 ▽1)【(非)9】

【顧客サービス課】 課長 ●藤田 直也

●木村 裕和 ○(リ)岩崎 和弥 ○谷口 正志 ○袖岡 孝好 ○竹田 裕紀 ▽堀内 葉子 ○ 傳大山 博 ○ 傳石倉 信作 傳広畑 健 傳馬渕 伸明 - 開鉄本 秀夫(技術コーディネーター) - 開台原 和広(技術コーディネーター) - 開山下 靖雄(技術専門スタッフ) 開稲葉 智恵美(司書) - 開佐近 由佳(事務補助) - 開大井 陽子(事務補助) - 開辻野 佳代子(事務補助)

【業務推進課】 課長 ●中西隆

【加工成形科】 科長 ●山口 勝己(兼マネージャー)

【14: ●1 ○10 研究員3】【(非):1】

[特殊加工・精密加工 担当] ○(リ)南 久 ○足立 和俊 ○萩野 秀樹 ○本田 索郎 ○安木 誠一 ○渡邊 幸司 山口 拓人 川村 誠 ㈱永田 芳樹(技術専門スタッフ)

「塑性加工・プラスチック加工 担当] ○(リ) 白川 信彦 ○吉川 忠作 ○奥村 俊彦 ○中本 貴之 四宮 徳章

【金属材料科】 科長 ●水越 朋之

【10:●1 ○8 研究員1】

[鋳造・金属熱処理・トライボロジー 担当] ○(リ)武村 守 ○星野 英光 ○横山 雄二郎 ○松室 光昭 ○道山 泰宏 [製品強度・金属加工プロセス 担当] ○(リ)小栗 泰造 ○森岡 亮治郎 ○平田 智丈 田中 努

【金属表面処理科】 科長 ●森河 務

【13:●1 ○10 研究員2】【(非):1】

[金属分析・表面改質 担当] ○(リ)三浦 健一 ○上田 順弘 ○山内 尚彦 ○塚原 秀和 ○足立 振一郎 ○岡本 明 ○榮川 元雄 小畠 淳平

[めっき・腐食・防食 担当]○(リ)中出 卓男 ○左藤 眞市 ○西村 崇 長瀧 敬行 開永畑 俊洋(技術専門スタッフ)

【制御・電子材料科】 科長 ●岡本 昭夫

【13:●1 ○9 研究員2 再雇用1】【(非):2】

[薄膜電子材料・微細加工 担当] ○(リ)筧 芳治 ○佐藤 和郎 ○田中 恒久 ○村上 修一 ○宇野 真由美 ○松永 崇山田 義春 - 角日下 忠興 - 俳石上 豊昭(技術専門スタッフ) - 佛車 - 溥相(技術専門スタッフ(NEDO))

[制御・メカトロニクス 担当] ○(リ)朴 忠植 ○大川 裕蔵 ○北川 貴弘 金岡 祐介

【製品信頼性科】 科長 ●出水 敬

【13:●1 ○6 研究員5 再雇用1】【(非):2】

【化学環境科】 科長 ●木本 正樹

【13:●1 ○10 研究員2】【(非):2】

【**繊維·高分子科**】 科長 ●赤井 智幸

【14:●1 ○10 事▽1 研究員2】

[繊維材料・繊維化学 担当] ○(リ)喜多 幸司 ○浅澤 英夫 ○菅井 實夫 ○宮崎 克彦 ○西村 正樹 陰地 威史 山下 怜子 ▽宮崎 逸代

[有機材料・接着粘着 担当] ○(リ) 櫻井 芳昭 ○山元 和彦 ○日置 亜也子 ○舘 秀樹 ○井上 陽太郎

【皮革試験所】 所長 ●稲次 俊敬

【4:●1 ○1 再雇用2】(兼務:▽1)【(非)1】

(兼)▽大野 栄子

■: 部長級 ◆: 次長級 ●: 総括研究員 ◇: 課長級 ▲: 課長補佐級 ○: 主任研究員 △: 主査級 ▽: 副主査級 (再): 再雇用職員 (リ): リーダー (兼): 兼務 (人): 人材派遣 (非): 非常勤職員

	#H			事	務	職				研 究	職		
職種·職階	理事長	部長級 (副理事長)	次長級	課長級	課長 補佐級	主査級	副主査級 及び一般	小計	総括研究員級*	主任 研究員級	研究員級	小計	合計
職員	1								1 6	7 4	2 2	1 1 2	113
再雇用										2	8	1 0	1 0
任期付						1		1					1
府派遣		1		2	4	8	1 0	2 5					2 5
計	1	1		2	4	9	1 0	26	1 6	7 6	3 0	1 2 2	1 4 9

人材派遣: 3名 *理事1名を含む

非常勤職員:21名(監事2、技術専門スタッフ10、司書1、SE1、技術コーディネーター3、事務補助4)

3. 研究業務

当所では府内の中小企業が強みを持つ産業分野において、更なる基盤技術力高度化を目指して研究開発を行うとともに、得られた成果は、研究発表会、各種学会・研究会での発表、各学協会への報文投稿等を行っている。また、国や各種財団等の提案公募型の研究開発事業に積極的に応募し、外部資金の獲得を目指すとともに、研究員のレベルアップを図っている。

研究業務はそのステージを明確にするため、特別研究、プロジェクト研究、発展研究、基盤研究、企業・大学等との共同研究の 5 種類に分類して以下のとおり実施した。

(1)特別研究(35件)

今後の府内企業又は法人の技術力の発展に極めて重要であると思われる研究で、国、独立行政法人、特別法により設立された特殊 法人、民法第34条に規定する公益法人等の補助事業又は委託事業の指定を受けた研究。

《戦略的基盤技術高度化支援事業「サポイン」》

我が国製造業の国際競争力の強化と新たな事業の創出を目指し、中小企業のものづくり基盤技術(鋳造、鍛造、切削、めっき等)に資する革新的かつハイリスクな研究開発等を促進することを目的とする研究。

[題 目] セラミックスコーティングとレーザ熱処理の複合 化による機械要素の高度化

[期 間] 22. 9. 1 ~ 24.12.31

[担当者] 加工成形科: 萩野秀樹、山口拓人

[成果の概要]本研究で開発したレーザ焼入れシステムを用いて、各種セラミックス被覆鋼に対してレーザ熱処理を行い、各種特性とレーザ照射条件の関係を明らかにした。これらの成果をもとに、カム・トムソンパンチの実用化を目標として、複数の試作品を作製し、実機性能評価試験を実施した。カムに関しては川下製造業者の要求仕様を満足するカムの作製に成功した。トムソンパンチについては、現時点では川下製造業者の要求仕様を満足することはできなかったが、従来法では不可能な高機能な性能を実現できる可能性を見出した。LCAにより環境負荷低減効果を試算したところ、本手法は総合環境負荷としても目標値を十分に達成できることが示された。

[題 目] 長寿命・微細 PCD(コバルト焼結ダイヤモンド)金型部品の開発

[期 間] 22. 9. 1 ~ 25. 3.31

[担当者] 加工成形科:南 久、渡邊幸司

業務推進課:石島 悌、平松初珠

「成果の概要」微粒子タイプのPCD(平均ダイヤモンド粒子サイズ:1 μm 以下)の加工に適した放電加工条件について検討した結果、加工面粗さの目標値を達成することができた。また、粗加工条件として、電極極性を定期的に切替える放電加工法を提案し、それぞれの極性比率と切替周期の適正化について検討した結果、加工時間を1/2以下に短縮(加工能率を2倍以上に向上)することができた。これらの結果については、共同研究を行う企業が所有する放電加工機上でも確認できた。

[題 目] 固体高分子形燃料電池向け金属セパレータの成形 技術の開発

[期 間] 22.11.1~25.3.29

[担当者] 加工成形科:白川信彦、四宮徳章、中本貴之 金属表面処理科:西村 崇

[成果の概要] セパレータ成形から発電テストまでを行ってきたこれまでの検討から、セパレータの最終目標形状として3系統および1系統のガス流路の金型を設計・製作し、実験を行った。いずれの形状も、電気炉で加熱した素板と常温の

金型で、サーボプレスのモーション制御を活用して素板に温度勾配を付与する温間成形において良好な結果が得られた。 さらに、金型加熱のためのヒータ孔加工と断熱材を排除した高剛性ダイセットを作製し、溝深さ精度の向上を図った。フィルムコーティング素板においては、金型を加熱した場合にはフィルムの耐熱温度以下でも傷等の不良が発生したが、電気炉加熱での成形ではほぼ問題なく成形できることがわかった。

[題 目] 高効率有機薄膜太陽電池のプリンタブル量産化基 盤技術の開発

「期 間] 23. 8.22 ~ 26. 3.31

[担当者] 繊維高分子科: 櫻井芳昭

[成果の概要]有機薄膜型太陽電池に応用可能な透明電極の作製を目指し、ITO 透明電極の抵抗値の低減を目的とし、半導体プロセスの一手法であるリフトオフ法を用いて、ITO 電極基板(5 cm 角)中への金(Au)配線の埋め込みを行った。その結果、未処理の ITO 膜の表面抵抗である約 50Ω から約 28Ωへと 45%程度下げることに成功した。この低抵抗化は、ITO 膜に対し、縦方向のみならず横方向へのエッチングが制御され、ITO と電子ビーム蒸着により作製された Au 膜間のすき間が小さくなり、ITO と Au 膜間の密着性が向上し、金の高い導電性の効果が現れた結果である。

[題 目] 低温域で鋳造する金型重力鋳造の革新的生産技術 開発による高強度薄肉鋳物の実現

[期 間] 23.10.12 ~ 26.3.31

[担当者] 金属材料科: 松室光昭、武村 守

[成果の概要]AC4Cを用い最大寸法 $0.3\,\mathrm{m}$ 、最小肉厚 $2\,\mathrm{mm}$ の製品を得るべく鋳造実験を行った。得られた試料は当所にて組織観察、表面観察、X線 CT スキャナによる内部欠陥解析、引張試験などを実施した。2 次デンドライトアームスペーシングは $10{\sim}15\,\mu\mathrm{m}$ であり、微細化目標($20\,\mu\mathrm{m}$ 以下)を達成できた。内部欠陥は厚肉部中央のみに存在し、薄肉部は健全であった。製品実体強度は JIS 規格を遥かに上回った。粉体離型剤が製品表面に稀に残存することがあるが、製品との付着力は極めて小さく問題にはならないことが明らかとなった。最終的に従来製品比 45%の軽量化を達成することができた。

[題 目] 切れ味の持続性に優れた刃物の表面処理技術の開発

[期 間] 24. 4. 1 ~ 25. 2.28

[担当者] 繊維高分子科:舘 秀樹、山元和彦、井上陽太郎 製品信頼性科:出水 敬

金属材料科: 道山泰宏

[成果の概要]本研究は切れ味が持続する刃物用の表面処理 技術を開発するものである。非粘着性向上を目指した最適塗 布条件の探索および様々な刃物基材、仕様毎の最適塗布条件 の探索を行うために非粘着特性の評価方法の確立、コーティング液・膜の分析・改良を行った。また、塗布、製膜、製造 各条件の最適化を詳細に行うと共に基礎データの蓄積を行った。その結果、当初目標である非粘着性および滑り性の持続、切れ味の持続について従来品比3倍以上を達成することができた。また、企業側の実用化に向けた達成目標である「塗布装置と製造技術の開発」、「試作された刃物の実機による切地と長寿命の実証」についてもそれぞれ目標値を達成することができた。

[題 目] 高性能フレネルレンズ用金型および金型材料の開発 「期 間] 24.11.1 ∼ 27.3.31

[担当者] 金属表面処理科:中出卓男、森河 務、長瀧敬行 足立振一郎、小畠淳平

[成果の概要]本年度は、Ni-P 合金めっき皮膜の基礎実験および共同研究者である民間企業の試験サンプルの材料評価を行った。基礎実験としては、めっき浴条件(液組成・pH・電流密度・温度)がめっき皮膜外観、皮膜組成、電流効率および電着応力に及ぼす影響について検討した。金型用めっきということで、厚付け時の応力特性の把握は、めっき処理時および切削加工において非常に重要と考えられ、今回の研究成果によって今後の指針となる重要な知見が得られた。材料評価としては、X線回折による構造解析、結晶粒サイズの評価、三点曲げ試験によるめっき皮膜の伸びの評価を実施した。

《産業技術研究助成事業「若手研究グラント」》

明日の産業技術を担う技術シーズの発掘・育成と研究人材 の育成を目的として、大学・研究機関等の若手研究者(個人 又はチーム)が取り組む優れた研究テーマ(目的指向型基礎 研究)に対する助成研究。

[題 目] 単結晶材料を用いた最高性能有機半導体論理素子 の開発

[期 間] 21. 7. 1 ~ 25. 6.30

[担当者] 制御·電子材料科: 宇野真由美、金岡祐介

車 溥相

[成果の概要]n型有機材料を用いて塗布法により単結晶 like な膜を作製し、インバータ動作を実証した。イオン液体を用いてゲート変調することにより、低電圧駆動でも高速の有機トランジスタ応答を実現した。

《先導的産業技術創出事業(若手研究グラント)》

我が国の将来の産業技術力を支える革新的な産業技術シーズの創出と、それを担う次世代人材の育成を目的とし、産学官連携の集中研究拠点と連携した「拠点連携研究」や、グリーン・イノベーション及びライフ・イノベーションのための「課題解決研究」を行う大学・公的研究機関に所属する若手研究者(個人又はチーム)に対する助成研究。

「題 目] 強誘電体 MEMS による高効率振動発電素子の開発

[期 間] 23.10.1 ~ 27.9.30

[担当者] 制御・電子材料科: 村上修一、土井 勲 金属表面処理科: 中出卓男、長瀧敬行

製品信頼性科:中嶋隆勝

[成果の概要]振動発電応用において大きな性能指数を有することが期待できる非鉛強誘電体 BiFeOs を用いて MEMS 振動発電素子を作製し、発電特性を評価した。その結果、2.8 mW/cm³/g²という発電性能が得られ、従来と比較して飛躍的な発電性能の向上が見られた。これは、Pb(Zr, Ti)Os 薄膜と比較して、比誘電率が一桁近く低いことと(性能指数は比誘電率の

逆数に比例する)、圧電定数 $e_{31,f}$ の低下が見られなかったことが原因と考えられる。以上より、 $BiFeO_3$ 薄膜が振動発電素子向け材料として有望であることが示せた。また、めっきプロセスが片持ち梁の先端に錘を形成する上で有効であることも確認できた。

《ナノテク・先端部材実用化研究開発》

革新的ナノテクノロジーを活用し、川上と川下の垂直連携、 異業種・異分野の連携で行うデバイス化開発について、ステージゲート方式によって絞り込みを行うことを前提に実施する研究。

[題 目] 革新的な高性能有機トランジスタを用いた表示パネル用フレキシブル高性能マトリックスの開発

「期 間 21.10.21 ~ 24. 9.30

[担当者] 制御・電子材料科: 宇野真由美、金岡祐介

土井 勲

[成果の概要] 今年度は、ディスプレイの高精細化をはかるため、有機半導体の上でのフォトリソグラフィプロセスについて検討した。有機半導体膜の特性に悪影響を与えないオルソゴナルなプロセスを用いて、プロセス条件を開発することにより、パターニングした後でも移動度が6 cm²/Vs 程度と非常に高い値を保ったままディスプレイ用のアクティブマトリクス構造を作製することができた。

《戦略的省エネルギー技術革新プログラム》

我が国における省エネルギー型経済社会の構築及び産業競争力の強化に寄与することを目的とする研究。

[題 目] 革新的高性能有機トランジスタを用いたプラス ティック電子タグの開発

「期 間 25. 1.10 ~ 26. 3.31

[担当者] 制御·電子材料科: 宇野真由美、金岡祐介

田中恒久、村上修一、松永 崇

[成果の概要]通信部については、有機トランジスタを用いて 50 MHz 以上の整流特性を確認した。論理回路については、n型とp型の有機トランジスタを組み合わせて、インバータ、NAND 回路、フリップフロップ回路を構築し、その動作を実現した。pMOS フリップフロップ回路について、ガラス基板上に作製した素子で、100 kHz の動作速度を達成した。有機メモリについては、強誘電体ポリマーPVDF 系材料を用いてコンデンサ構造を作製した。膜に印加する電圧値を高電界にすることで、綺麗なヒステリシスをもつ良好な強誘電性を得ることができた。

《低炭素社会を実現する超軽量・高強度融合材料プロジェクト》

国内技術が海外と比べて優位性をもっていながら、実用化に至っていない単層カーボンナノチューブに的を絞り、融合材料の開発に必要な形状、物性の制御、分離精製技術などの基盤技術の開発を行う。また、CNIの普及の上で必要な、CNI等のナノ材料の簡易自主安全管理等に関する技術の開発を併せて行い、これらの融合基盤技術の成果と、研究開発動向等を踏まえて、CNI融合材料の実用化に向けた開発研究。

[題 目] カーボンナノチューブを用いた高熱伝導性複合材 料の開発

[期 間] 24. 5. 1 ~ 25. 2.28

[担当者] 化学環境科: 垣辻 篤、稲村 偉、渡辺義人 長谷川泰則

[成果の概要]これまでの研究により、ハイブリッド添加する CNT に放電プラズマ焼結機を用いた熱処理を実施することによ り、複合材料の熱伝導率が向上することを明らかにしている。本年度はCNTの構造変化をラマン分光分析法により評価することによって、CNTの結晶性が複合材料の熱伝導率に及ぼす影響について調査した。その結果、熱処理温度の上昇に伴ってCNTの結晶性が向上するが、ある温度を境に単層同士の結合や単層から多層への変化が生じ、これらの影響によりCNTの結晶性が低下することを明らかにし、CNTの結晶性の向上と複合材料の熱伝導性との間に相関があることがわかった。

《研究成果最適展開支援事業(A-STEP)》

大学・公的研究機関等で生まれた研究成果を基にした実用 化を目指すための幅広い研究開発フェーズを対象とした技術 移転支援制度による研究。

[題 目] 大気圧プラズマジェットによる歯根管内殺菌消毒 治療の開発

[期 間] 22. 8.23 ~ 24. 9.30

[担当者] 化学環境科:井川 聡

[成果の概要] 本研究は A-STEP 事業として採択された「大気圧低温プラズマジェットによる歯根管内殺菌消毒治療法の開発」の最終年度にあたるもので、平成23年度末時点で残されているチェックポイント項目の達成を目標とした。具体的にはヒト抜去歯牙に塗布したバイオフィルムを処理時間1分以内に検出限界以下にまで殺菌することであったが、プラズマ処理水を利用することで目標値の達成に成功した。さらに、このプラズマ処理水の利用価値を高めるために諸性質を解明し、生成方法や保存方法、使用条件などの最適化を行った。

[題 目] 積層造形法の適用による力学特性の異方性を制御 した低弾性率・高強度人工骨の開発

[期 間] 23.12.1~24.7.31

[担当者] 加工成形科:中本貴之、白川信彦 制御・電子材料科:北川貴弘

[成果の概要]単孔四角柱状構造からなるセル構造体の中に種々の梁構造を設計し、気孔の伸長方向と平行および垂直方向の弾性率を有限要素解析から求めた結果、脆弱な垂直方向の弾性率は梁補強により増加し、異方性を低減できることがわかった。生体材料である純Ti の積層造形により、種々の梁補強構造体を実際に作製し力学特性を評価した結果、有限要素解析の結果と同様に異方性低減の傾向が認められた。特に脆弱方位に対して平行方向に近い向きに水平板を補強することが、弾性率および強度の異方性低減と強化能の発揮には有効であることがわかった。

[題 目] 電析法による白金使用量を大幅に低減した水素製造電極の作製

[期 間] 23.12.1~24.7.31

[担当者] 金属表面処理科:中出卓男、西村 崇、森河 務 [成果の概要] 白金使用量の大幅な低減化と水素発生触媒能向上の両立が期待できる電解白金処理法において、白金ナノ粒子の供給源である白金陽極の溶解挙動、連続水電解時の耐久性および折出粒子の形態制御について検討した。白金陽極の溶解速度は電解液の種類に大きく依存し、また電解液濃度・温度および陽極電流密度の増加とともにほぼ直線的に増加することを明らかにした。また、作製した電極の耐久性については、2000時間の連続電解後においても顕著な粒子脱落や凝集は認められず、また電気化学的な水素発生能についても初期性能を維持していることを明らかにした。析出粒子の形態については、電気化学的に評価できることがわかった。

[題 目] ZnO-SnO₂ 系レアメタルフリー酸化物を用いた高移 動度薄膜トランジスタの作製

「期 間 24.11.1~25.3.31

[担当者] 制御・電子材料科: 佐藤和郎、山田義春 村上修一、筧 芳治

繊維高分子科:櫻井芳昭

[成果の概要]レアメタルを含まず、環境にもやさしい ZnO-SnO₂(ZTO)系薄膜を用いたTFTの作製することを目的として研究を行った。この目的を達成するために、非加熱スパッタリング法を用いて、SiO₂ ゲート絶縁膜を作製することを試みた。結果として、良好な絶縁特性を有するSiO₂ ゲート絶縁膜を作製することができた。このSiO₂ ゲート絶縁膜を用いて、p+Si 基板をゲート電極とする非加熱スパッタリング法により成膜したZTOを用いてTFTの作製を行った。作製したTFTは、正常に動作することが確認できた。

[期 間] 24.11.1~25.10.31

[担当者] 加工成形科:本田索郎、足立和俊、山口勝己 金属表面処理科:上田順弘、榮川元雄

[成果の概要]熱処理によるダイヤモンド工具の長寿命化に関して、再現性の検証を行った。今回は、前年の直線切れ刃工具より結晶中の先在欠陥が多く、耐損耗性が低いと思われる円弧切れ刃工具で無電解ニッケルめっき層の切削を行った。その結果、低真空中で熱処理した工具のすくい面摩耗深さが、非熱処理工具のそれの約半分となり、前年に続いて熱処理による耐損耗性の向上を確認できた。一方、鉄系材料の窒化による工具摩耗抑制に関しては、プラズマ窒化処理した炭素鋼(S45C)の切削を行った。その結果、窒化を施さない場合に比べて工具逃げ面の損耗幅が約10分の1に減少し、窒化処理がダイヤモンド工具の摩耗抑制に非常に効果的であること明らかとなった。

題 目] 車両軽量化に資する鉄鋼とアルミニウム合金テー ラードブランクの高品位プレス成形技術の開発

[期 間] 24.11.1~25.10.31

[担当者] 金属材料科:田中 努、平田智丈 加工成形科:四宮徳章、白川信彦

[成果の概要]自動車に使用されている 590 MPa 級高張力鋼板および低強度であるが深絞り特性が優れている SPCE を鋼側の供試材とした。鋼板の板厚は流通の関係で、1~1.2 mm厚である。アルミニウム側は2mm厚の1100(純アルミニウム)と 5052(A1-Mg 系合金)を供試材とした。供試材の基礎的な機械的特性を把握するために、各試料における圧延方向から0、45、90°方向の耐力、破断強度、破断伸び、ランクフォード値を測定し、限界深絞り比(LDR)を測定した。また、適した接合ツールと接合条件を予測するために、接合中の材料流動のシミュレーションを試みたが、シミュレーション設定の複雑さおよび計算が長時間化することから、今回は続行を断念した。

[題 目] 気づきやすいサイン音を搭載した有機 EL パネルによる視・聴覚融合型誘導システムの提案

[期 間] 24.11.1~25.10.31

[担当者] 製品信頼性科:片桐真子

繊維高分子科:櫻井芳昭

[成果の概要] 本年度は、臨場感ある立体音場を収録・再生可能なシステムを構築するため、ステレオ収音再生方式の一種であるバイノーラルマイクロホンと人工耳を購入した。そしてこれらを用いて、想定環境に選んだ当所多目的ホールに

おいて開催された講演を収録し、気づきやすいサイン音の実証実験のための背景音として用いることとした。一方、サイン音を搭載する有機 L パネルは、均一な発色と発光の調整をしながら製作を進めており、このパネルに装備するフラットパネルスピーカについても、準備を進めている。

[題 目] 廃棄コラーゲン繊維を用いて合成したマイクロポーラスシリカの VOC 動的吸着特性と皮革廃棄物の新規有効利用方法の構築

[期 間] 24.11.1 ~ 25.10.31 [担当者] 皮革試験所:道志 智

化学環境科:小河 宏

[成果の概要] コラーゲン繊維/シリカ複合体からコラーゲン 繊維を除去する方法がマイクロポーラスシリカの細孔径に及 ぼす影響について検討した。600 ℃、5 時間焼成してコラー ゲン繊維を除去した試料に比べ、酸処理によりコラーゲン繊 維を除去した試料の細孔径は大きいことがわかった。

[題 目] 電着ダイヤモンド砥石の熱分解カーボン付着量制 御型放電ツルーイングに関する研究

[期 間] 24.11.1 ~ 26.3.31

[担当者] 加工成形科:渡邊幸司、南 久 業務推進課:平松初珠、石島 悌

[成果の概要] 放電加工条件の検討・評価に必要である熱分解カーボンの付着状態評価手法について検討した結果、ラマン分光分析を用いることで付着状態を評価できることを確認した。また、放電加工状態を評価する手法について検討した結果、リアルタイムで放電パルス数をモニタリングするシステムの試作を行った。さらに、これらを用いて放電加工条件の検討を行った。

《科学研究費補助金》

人文・社会科学から自然科学まで全ての分野にわたり、基礎から応用までのあらゆる「学術研究」(研究者の自由な発想に基づく研究)を格段に発展させることを目的とする「競争的研究資金」であり、ピア・レビューによる審査を経て、独創的・先駆的な研究に対して日本学術振興会が助成を行う研究。

[題 目] プラズマ溶射と低温プラズマ窒化処理の複合化に よる高機能ステンレス皮膜の開発

[期 間] 22. 4. 1 ~ 25. 3.31

[担当者] 金属表面処理科: 足立振一郎、上田順弘、榮川元雄 「成果の概要] SUS316L のオーステナイト系ステンレス溶射 皮膜に、低温プラズマ窒化処理および低温プラズマ浸炭処理 により、拡張オーステナイト(S相)の形成、および浸炭処理 と窒化処理の複合化を試みた。その結果、溶射の際に生成し た酸化物が皮膜内に存在していたが、S相の膜厚は SUS316L 鋼板とほぼ同程度であった。また、マイクロビッカースで表 面硬さを測定したところ、1000 HV 以上の硬さが得られ、摩 擦摩耗試験においても耐摩耗性の大幅な向上が認められた。 また、浸炭処理と窒化処理の複合化により、S相を厚膜化す ることができた。

[題 目] 積層造形法による金属ガラス材の創製と大型複雑 形状の造形

[期 間] 22. 4. 1 ~ 25. 3.31

[担当者] 加工成形科 中本貴之、白川信彦、四宮徳章

[成果の概要] 本研究は、大型化および二次加工が難しいとされている金属ガラス材を積層造形法により作製することを目指すものである。今年度は、金属ガラス単体粉末を用いて3次元形状の積層造形実験を行った。その結果、レーザの走

査速度の増加につれて結晶相の生成は抑制できるものの、微結晶相の存在しない完全な金属ガラス体の作製が可能な造形条件を見出すことはできなかった。一方、TTT 曲線においてノーズ時間が長い金属ガラス組成の混合粉末を用いて種々のレーザ照射条件を検討した結果、金属ガラス単体粉末を用いる場合に比べ金属ガラスの体積割合が高くなる造形条件を見出した。

[題 目] 多言語会話文・語彙データベース構築と異文化交流におけるその活用に関する研究

「期 間 22. 4. 1 ~ 25. 3.31

[担当者] 業務推進課:石島 悌、平松初珠 製品信頼性科:片桐真子

[成果の概要] 今年度は3年間にわたる科研の最終年度である。引き続き、大阪大学ならびに東京外国語大学で蓄積された言語資源の活用に関するアプリケーション開発ならびに音声データの活用方法を検討した。多言語資源は進捗にばらつきがあるものの、ウルドゥー語・アラビア語・タイ語・スペイン語・スワヒリ語での整備が進んだ。アプリケーションは、パソコン単体のみならず、データをウェブサーバに蓄積する方式にも対応させ、インターネット環境が整備された場所での利便性を向上させた。

[題 目] 有機単結晶界面のデバイス機能と物性開拓

「期 間 22. 4.12 ~ 25. 3.31

[担当者] 制御・電子材料科: 宇野真由美

[成果の概要] 今年度は、いくつかの異なる分子の単結晶を用いて、圧力効果を測定した。分子の種類によって、また結晶軸の方向によって圧力効果が異なることを明らかにした。これは圧力が加わったときの分子の結晶中での回転、歪み等の影響の違いによるものと考えられる。今後、フレキシブルデバイスを開発する際に、特に基板を曲げたときの影響についての基礎的なデータを得ることができた。

[題 目] ナノファイバーから構成される芳香族ポリアミド 多孔質体の構造および機能制御

[期 間] 23. 4.28 ~ 26. 3.31

[担当者] 化学環境科:吉岡弥生

経営戦略課:浅尾勝哉

[成果の概要] 昨年度の研究結果を踏まえ作製したトリフルオロメチル基を有する芳香族ポリアミドナノファイバー多孔質体について、その形成過程や形成後の時間変化に伴う構造および特性変化について検討を行った。その結果、モノマー溶液混合後、最初に粒子が多数形成され、その後自己組織化によりファイバー状に変化することが分かった。また、このようなモルフォロジー変化を伴う形成過程においても、重合は進行していった。そして、一定時間後に繊維径などが揃った多孔質体が得られた。さらに反応時間を長くすると、そのモルフォロジーは乱れるが、分子間の水素結合および結晶化度は増加する傾向が見られた。

[題 目] リサイクル分野で利用可能な易解体性粘着技術の 開発

「期 間 23. 4.28 ~ 26. 3.31

[担当者] 繊維高分子科: 舘 秀樹、山元和彦、井上陽太郎 [成果の概要] 本年は昨年度に引き続き、ポリウレタン系易解体粘着剤の最適化を行うと共に、ポリアセタール系易解体粘着剤を新規に開発し、その最適化を行ってきた。ポリアセタール型易解体粘着剤は一段階で合成が可能であり、初期粘着強度も10~11 N/20 mm と高いものを作成することができた。この粘着剤は熱酸発生剤を加え加熱することで、粘着強度を

0 N/20 mm に低下させることができた。また、新たなトリガーとして超音波照射に着目した易解体粘着剤の開発を進めているところである。金属微粒子含有粘着剤は、粘着剤膜厚、金属粒子の種類、サイズ、量等を調整することで、超音波照射により粘着強度を減少させることに成功した。

[題 目] 生体内崩壊性材料を利用した弾性率漸減型インテ リジェント骨固定材の開発

[期 間] 23. 4. 1 ~ 26. 3.31 [担当者] 加工成形科:中本貴之

[成果の概要]本研究は、生体材料であるコバルトクロム合金に着目し、骨と同等の低い弾性率を有する多孔体をレーザ積層造形法により作製することで、弾性率漸減型インテリジェント骨固定材の開発を目指すものである。今年度は、多孔体の高強度化を目指し、高クロム高窒素含有 Co-Cr-Mo 合金を用いて緻密体を造形し、その諸特性を調査した。引張試験の結果、0.2%耐力、引張強さ、伸びのいずれも Co-33Cr-5Mo-0.3N造形物は高強度・高延性を示し、特に 0.2%耐力は Co-29Cr-6Mo 造形物に比べ 200 MPa 程度高い値を示した。今後、骨と同程度の低い弾性率を有する多孔体において、強度の改善が期待できる。

[題 目] 歩行に伴う人体帯電の予測を目的とした接触帯電 特性を測定するシステムの開発

[期 間] 24. 4. 1 ~ 27. 3.31

[担当者] 製品信頼性科:平井 学

[成果の概要] 物体同士の接触・分離で発生する微少な電荷量を測定するための装置開発を行っている。接触圧が直立した人体と床面との間に生じる圧力程度になるように設計しており、その接触・分離の機構は真空吸着法で実現している。分離は重力を利用し、直下にファラデーケージを設け、そこへ分離したものを投入することでその物体同士が接触することによって移動した電荷量を測る。現在、当研究所で保有しているファラデーケージでは接触・分離で発生する電荷量はあまりにも小さすぎて測れないため、新しく微小電荷量測定用のファラデーケージを設計している。また、電荷が移動するときの駆動力を検討するため接触電位差測定装置の製作を行っている。

[題 目] 3次元有機トランジスタを用いた有機チャネル高 周波特性解明と高速デバイスの開発

[期 間] 24. 4. 2 ~ 28. 3.31

[担当者] 制御・電子材料科:字野真由美、山田義春 金岡祐介

[成果の概要]ゲート寄生容量を低減した新たな構造を開発することにより、移動度が 0.3 cm²/Vs 程度でも遮断周波数の測定であっても 7 MHz の高速応答を実現した。n 型材料を用いた移動度は、0.01 cm²/Vs 程度にとどまった。低温での高周波測定については、高周波評価手法とその妥当性について検討を行った。OFET を用いた測定はまだ報告がないため、新しい方法で室温にて評価の妥当性の検証を行った。

《環境対応革開発実用化事業》

経済産業省の補助により日本皮革技術協会が(社)日本タンナーズ協会と協力して行っている事業で、環境に配慮した製造方法で人体に安全な革を消費者に提供することにより皮革産業を持続可能な産業として発展させることを目的とする研究。

「題 目〕環境対応革実用化研究

[期 間] 22. 5.25 ~ 25. 3.31

[担当者] 皮革試験所: 稲次俊敬、道志 智、汐崎久芳 奥村 章 「成果の概要」市場流通革として、国産革 35 点、輸入革 10 点収集し、JES 基準に基づく試験・分析を行った結果、国産 革は 35 点中 29 点(適合率 83%)が、輸入革は 10 点中 5 点が適合(同 50%)していた。(2)二酸化炭素排出量の削減を目的として製革企業において消費される電力の計測を行った。水戻しなど準備作業、鞣し、染色・加脂、仕上げ工程における電力消費量を計測した結果を詳細に解析し、電力消費の実態解析と、節電に向けた方針を探った。このような計測は、これまでに製革工業で行われたことは無く、全てが手探りの状態であったため、まず、工場における電力消費状況を徹底的に解析することに本年度の主眼を置いた。

《特例財団法人金型技術振興財団 研究助成》

金型に関する研究開発に対する助成研究。

[題 目] EV 用リチウムイオン電池筐体の低コスト化・高精 度化に資するサーボプレス深絞り成形技術の開発

「期 間 24. 4. 1 ~ 25. 3.31

[担当者] 加工成形科:四宮徳章、白川信彦、中本貴之 金属材料科:田中 努

[成果の概要] 各種板材(SUS304、SPCC、A5052)での円筒絞り実験を行った。それぞれの板材では、成形性を向上できるスライドモーションは異なり、SUS304では成形後半にスライドを引き上げる、SPCCでは成形の前半にスライドを引き上げる、A5052ではスライドの引き上げを行わず高速で成形を行うことが有効であることがわかった。また、SUS304の角筒絞り実験では、円筒絞り実験で得た知見通り、成形後半のスライドの引き上げにより、限界成形高さを大幅に向上できることがわかった。

《公益財団法人天田財団研究助成》

『21世紀のものづくりの基盤』を構築する金属等様々な材料の諸特性を利用した加工に関連する独創的な研究に係る助成事業を通じて、製品の軽量 化、小型化、高強度化、高機能化や製造工程における省資源化、省エネルギー化等々、金属等の加工に関する新しい科学技術の創出と研究過程において育まれる 人材の育成など、産業と学術の振興に広く寄与することを目的とする助成研究。

[題 目] 塑性発熱を利用した自己昇温プレス成形法の開発「期 間] 23. 2.9 ∼ 25. 3.31

[担当者] 加工成形科:四宮徳章、白川信彦、中本貴之 [成果の概要] SUS304 板材の絞り成形を行った。塑性発熱を利用するため、断熱性能の高いジルコニア金型や素材にフィルムを貼付する方法により、発熱を有効に利用できるのかを検討した。結果、SUS304 絞り製品で問題になることが多い「置き割れ」の原因のひとつである加工誘起変態率を、発熱の有効利用により低減することができた。また、衝撃押出し成形では、塑性発熱が金型へ移動することをサーボプレスモーションで適切に制御することで、製品の寸法精度を高めることができた。

[題 目] レーザ加熱による表面溶体化処理を応用した β型 チタン合金の新しい表面硬化処理とそのトライボロジー特性

[期 間] 23.10.6~26.3.31

[担当者] 金属材料科: 道山泰宏

[成果の概要] 昨年から Ti-15V-3Cr-3Sn-3AL (15-3) 合金を代表合金として熱処理特性ならびに摩擦摩耗特性について調査しており、本年は、数少ないチタン合金の内、JIS 規格にも採用されている Ti-22V-4Al (22-4) 合金について熱処理特性を

中心に調査した。これは、レーザ加熱による表面硬化現象が 15-3 合金だけなのか、チタン合金の新しい熱処理方法として 利用できるのかを調査するためである。その結果、15-3 合金 ほど時効析出速度に差が大きくなかったが、22-4 合金につい ても新しい熱処理方法により表面硬化することが確認できた。

[題 目] チャンネル型微細溝を有した塑性加工金型用硬質 厚膜の開発

[期 間] 24.10.1 ~ 27.3.31

[担当者] 金属表面処理科:小畠淳平、三浦健一、森河 務 加工成形科:四宮徳章

[成果の概要]本年度では、予備実験として(1)チャンネル型 微細溝を有する硬質 Cr めっきの表面形状の確認、(2)めっき 上への各種 PVD 皮膜の形成を実施した。 SEM 観察の結果、微 細溝の幅は 500 nm 前後であり、セグメント間隔(微細溝間の長さ)は約 $40~\mu$ m であった。成膜実験の結果、PVD 皮膜(TiN、CrN、TiAlN)を約 $2~\mu$ m 形成した状態でも、PVD 皮膜に下地のチャンネル型微細溝の形状が転写されており、多くの部分で溝も開口していることが確認できた。また、ロックウェル C 試験による密着性評価でも、PVD 皮膜は硬質 Cr めっきからの剥離を示すことはなかった。

(2) プロジェクト研究(1件)

府内企業の技術力の高度化や新分野への進出につながる研究で、法人の技術開発力や支援力の高度化にもつながる研究。

[題 目] 積層造形(RP)法による高品質医療用デバイスのオーダーメイド造形技術の開発

[期 間] 24. 9. 1 ~ 25. 3.31

[担当者] 加工成形科:中本貴之、白川信彦、四宮徳章 吉川忠作、山口勝己

[成果の概要] セル構造体として単孔四角柱状構造からなる構造体を基本骨格とし、単孔内部に種々の板状の梁構造を設計し、有限要素解析から気孔の伸長方向と平行および垂直の3方向の弾性率を計算した。その結果、特に脆弱方位に対して平行方向に近い向きに水平板を補強することが、弾性率の異方性低減に有効であることがわかった。実際に生体材料である純 Ti の積層造形により種々の梁構造体を作製し力学特性を評価した結果、有限要素解析の結果と同様に弾性率と強度の異方性低減の傾向が認められた。

(3)発展研究(2件)

府内企業の技術の高度化に資する研究又は新技術、新製品の開発を誘発する研究及び産業において有用かつ重要と思われる研究。

[題 目] 放電プラズマ焼結法を用いた金属基ならびにセラ ミックス基複合材料の開発

[期 間] 24. 5. 1 ~ 25. 3.31

[担当者] 化学環境科:垣辻 篤、長谷川泰則、稲村 偉 渡辺義人

[成果の概要]放電プラズマ焼結法による金属間化合物ならびにその複合材料の作製を検討した。本研究では、マトリックスをNi3(Si, Ti)とし、まず始めに、Ni, Si, Ti 混合粉末を原料とする要素粉末法による作製条件の検討を行った。その結果、Ni3(Si, Ti)金属間化合物単相材を作製できる条件を見いだした。引き続き、この原料粉末に各種セラミックス粉末を混合することにより複合材料の作製を検討した。その結果、添加するセラミックスによって、良好な焼結体を作製できるものと出来ないものがあることがわかった。良好な焼結体を作製できたものは、室温ならびに高温の硬さが大きく向上することがわかった。

[期 間] 23. 4. 1 ~ 26. 3.31

[担当者] 繊維高分子科: 櫻井芳昭、井上陽太郎

制御・電子材料科:佐藤和郎、村上修一

[成果の概要]ポリマー電着法とフォトリソグラフィ法を組み合わせて、市販 Web カメラの CMOS センサの保護膜である SiN 膜上に単色(青、赤および緑色)ではあるが、底面が 50 μm のカラーマイクロレンズアレイを作製することに成功した。 なお、窒化ケイ素膜に導電性を付与するために ITO 導電膜をあらかじめ形成した。また、得られた各色のマイクロレンズアレイの光透過率及び色純度は極めて優れており、市販のフルカラーマイクロレンズアレイと同程度である。さらに、CMOS センサを電解液等で破損させることなく、マイクロレンズアレイを作製することができた。

(4) 基盤研究(38件)

企業の課題を解決することや基盤技術力の向上を目的とし、あわせて法人の技術力を向上・維持していくために実施する研究で、 将来的には発展研究、特別研究等の研究事業に発展させることを意図した研究。

題 目	期間	担当者
長さ測定における不確かさ評価	24. 5. 1	加工成形科:足立和俊、本田索郎
	25. 3.31	
レーザ微細溶接技術および溶接欠陥の非破壊検査技術の開発	24. 5. 1	加工成形科: 萩野秀樹、山口拓人、四宮徳章
	26. 3.31	金属材料科:武村 守
超精密切削用ダイヤモンド工具の長寿命化技術の開発	24. 5. 1	加工成形科:本田索郎、足立和俊、山口勝己
	26. 3.31	
切削加工における工具負荷の新たな評価法の提案	24. 5. 1	加工成形科:安木誠一、川村 誠
	26. 3.31	
微細複合加工技術の高度化- マイクロ放電加工技術と機上計測技術の	24. 5. 1	加工成形科:渡邊幸司、南 久
開発	26. 3.31	業務推進課:平松初珠、石島 悌
ファイバーレーザとガルバノスキャナーを用いたレーザ合金化技術の	24. 5. 1	加工成形科:山口拓人、萩野秀樹
開発	26. 3.31	
鋼に高品位硬化層を形成する新規ガス浸炭プロセスの開発	24. 5. 1	金属材料科:横山雄二郎
	26. 3.31	

題目	期間	担 当 者
新規加工熱処理を施した金属材料の評価技術の確立	24. 5. 1	金属材料科:田中 努、小栗泰造、平田智丈
	27. 3.31	
耐熱衝撃性に優れた B4C ターゲット材の開発	24. 5. 1	金属表面処理科:三浦健一、小島淳平
プラズマ窒化・浸炭処理における後熱処理による耐食性の向上	25. 3. 31	化学環境科:垣辻 篤、渡辺義人 金属表面処理科:榮川元雄、上田順弘
ノンスマ室化・夜灰処理における後熱処理による順良性の同上	24. 5. 1 25. 3.31	金属衣面处理科:宋川元雄、上田順弘
	24. 5. 1	金属表面処理科:小畠淳平、三浦健一
ODIE V J J JAN O DENIN V J JAN V JAN V JAN V JAN V DINI J	28. 3.31	
電析法による貴金属微粒子の形体制御	24. 5. 1	金属表面処理科:西村 崇、中出卓男、森河 務
	26. 3.31	
めっき皮膜の密着性と界面状態との相関性の検討	24. 5. 1	金属表面処理科:長瀧敬行、中出卓男、森河 務
	26. 3.31	Hallby 3 - I bloody to 2 the May Have
アルミニウム化合物を用いた高性能透明断熱積層薄膜の開発	24. 5. 1	制御・電子材料科: 松永 崇、筧 芳治 佐藤和郎
ZnO-SnO2系材料を用いた薄膜トランジスタの作製	26. 3. 31 24. 5. 1	
ZHO SHOZ 示例付を用いて得戻下ノンフハグの下表	25. 3. 31	第 芳治
- 計測制御ネットワークシステムの開発手法の調査 —Android OS 搭載		制御・電子材料科: 朴 忠植、北川貴弘
スマートフォンと周辺マイコン電子機器との通信制御システムの試作ー	25. 3.31	
ウェブサイトから操作できるグラフィックスコンテンツの作成	24. 5. 1	制御・電子材料科:大川裕蔵
	25. 3.31	
超音波を用いた位置計測手法の改善とハードウェアの開発	24. 5. 1	制御・電子材料科:金岡祐介
2 11 th to the second s	26. 3.31	
ミリ波・テラヘルツ波による非破壊検査技術の開発	24. 5. 1	製品信頼性科:田中健一郎、松本元一
LED 照明の省エネルギー化・高機能化に向けた配光特性に関する検討	26. 3. 31 24. 5. 1	製品信頼性科:山東悠介、岩田晋弥
LED 無例でを14人でも、「Lindix Licinit)に自己して付上に対する1次的	25. 3. 31	業務推進課:石島 悌
	20. 0.01	制御・電子材料科:大川裕蔵
製品衝撃強さ試験結果の統計的解析方法の開発	24. 5. 1	製品信頼性科:中嶋隆勝、高田利夫、津田和城
	26. 3.31	細山 亮
包装貨物の損傷に及ぼす流通環境の影響	24. 5. 1	製品信頼性科:高田利夫、中嶋隆勝、津田和城
	26. 3.31	細山 亮
褥瘡予防寝具類の圧縮変形と接触圧の関係	24. 5. 1	製品信頼性科:山本貴則、片桐真子、平井 学
キャントルト ウィンチボクルナー・ア・フィンナンドル・グ・レー・ア・フィー・ア・フィン・フィー・ア・ア・フィー・ア・フィー・ア・フィー・ア・フィー・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア	26. 3.31	顧客サービス課:木村裕和
輸送時や試験時の包装貨物の振動解析および疲労評価	24. 5. 1 26. 3. 31	製品信頼性科:津田和城、中嶋隆勝、細山 亮 高田利夫
#ガウス型ランダム振動が包装内容品の応答に与える影響	24. 5. 1	製品信頼性科:細山 亮、中嶋隆勝、津田和城
7/7/ 7: 127 · 7 · · · · · · · · · · · · · · · · ·	26. 3.31	高田利夫
化学分析における信頼性確保に関する研究	24. 5. 1	化学環境科:中島陽一、林 寛一
	25. 3.31	
遺伝子解析法を用いた動物毛、皮革製品等の同定方法の検討		化学環境科: 増井昭彦、井川 聡
On the state of th		皮革試験所: 奥村 章、道志 智
プラスチック添加剤の分析手法とデータベース化	24. 5. 1	化学環境科:小河 宏、吉岡弥生
環境調和型水溶性 OH ラジカル生成触媒の固定化に関する研究	26. 3. 31 24. 5. 1	顧客サービス課:岩崎和弥 化学環境科:林 寛一、中島陽一
深党時代主人では、クラスル上成型深い国に同党するが元	26. 3. 31	11 12 12 13 13 13 13 13
- FIB/STEM を用いた材料評価技術の構築	24. 5. 1	化学環境科:長谷川泰則
	26. 3.31	10.3 21.3 21.4 22.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
省エネ型高濃度 NH3 排水処理法の開発	24. 5. 1	化学環境科:大山将央、井本泰造
ーアンモニアを水素源とした燃料電池システムの活用ー	26. 3.31	
指ロボットを用いたタオルの扱い易さの格付け	24. 5. 1	繊維・高分子科:宮崎克彦、宮崎逸代
	26. 3.31	制御・電子材料科:北川貴弘
フッ素樹脂の接着性向上処理の高速化 一大気圧プラズマ照射時間の短縮—	24. 5. 1	繊維・高分子科:陰地威史
酸化チタン導波路の形成と光触媒能センシング	25. 3. 31 24. 5. 1	 繊維・高分子科:日置亜也子
	26. 3. 31	
被接着材料の再生を図れる新規解体性接着剤の開発	24. 5. 1	 繊維・高分子科:井上陽太郎、舘 秀樹
SWINNEY HATTER SWINNEY HATTER SWINNEY	26. 3.31	山元和彦
ICT による所内業務効率化	24. 5. 1	業務推進課:平松初珠、中西 隆、石島 悌
	25. 3.31	新田 仁、中辻秀和
皮革素材判別における定量評価方法の開発	24. 5. 1	皮革試験所:道志智、奥村章、汐崎久芳
	26. 3.31	
15 AHARA TITTI I I DAGARDI I DIOL A N	04 =	
コラーゲン繊維を利用した機能性材料の合成	24. 5. 1 26. 3.31	皮革試験所:道志智、汐崎久芳 化学環境科:小河宏

(5) 共同研究(35件)

当所と他機関等がそれぞれ保有する人材、技術、設備、資金等を有効に活用し、研究分野の拡大、研究レベルの向上、研究期間の短縮又は研究効率の向上等を図るため、下記のとおり共同研究を行った。

【民間企業等】(14件)

[四周正未守](13月)		
題 目	期間	担 当 者
コバルト基高温耐久材料	24. 5. 1	金属材料科:武村 守、松室光昭
	25. 3.29	金属表面処理科:山内尚彦、岡本 明
		加工成形科:四宮徳章
カーボンナノコイル(CNC)高収率合成触媒の開発とサンプル供給	24. 5.21	化学環境科:長谷川泰則、木本正樹
	25. 3.29	製品信頼性科:田中健一郎
		経営企画室:野坂俊紀
刃物の切れ味を向上させる薄膜フッ素コーティングの性能評価	24. 6. 1	加工成形科:南 久、渡邊幸司、安木誠一
	25. 3.31	
刃物の切れ味が持続する表面処理技術の開発	24. 6. 4	繊維・高分子科:舘 秀樹、山元和彦
	25. 3.29	井上陽太郎
		製品信頼性科:出水 敬
		金属材料科:道山泰宏
高温特殊環境用オイルレス小型圧力センサの開発	24. 6. 4	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10
	25. 3.31	日下忠興、佐藤和郎、山田義春
		金属材料科:小栗泰造
カーボンナノチューブ糸の吸着特性に関する研究	24. 6.15	繊維・高分子科:喜多幸司、赤井智幸、西村正樹
	25. 3.29	
垂直配向カーボンナノチューブの効率的な品質評価手法の検討・確立	24. 6.18	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	25. 3.29	経営企画室:野坂俊紀
UBMS 法による DLC 成膜条件パラメーターと表面特性に関する研究	24. 7.30	金属表面処理科:三浦健一、小畠淳平
	25. 3.31	
超微粒子高速噴射研磨加工法を用いた表面改質による高性能歯車の作製	24. 8. 1	金属材料科:小栗泰造、田中 努
	25. 3.29	
ガス法による低温窒化・浸炭処理法の開発	24. 10. 9	
	25. 3.31	
		金属材料科:小栗泰造、道山泰宏
		繊維・高分子科:日置亜也子
金属粉末ラピッドプロトタイピングの実用化検討	24. 10. 10	
	25. 3.31	山口勝己
		金属表面処理科:岡本 明
歯科用プラズマ殺菌装置開発のための基礎研究	24. 10. 25	化学環境科:井川 聡
	25. 3.31	
浸炭速度センサの要素技術研究	24. 11. 1	金属材料科:星野英光
	25. 2.28	
ステライト材のレーザ肉盛り加工における肉盛り層の品質向上に関す		
る研究	25. 3.31	四宮徳章

【大学等】(21件)

[八子寺] (21斤)	1	İ	1
題 目	期間	担 当 者	共同研究機関
高性能三次元有機トランジスタの開発	24. 4. 1	制御・電子材料科:宇野真由美	大阪大学
	25. 3.31		
可視化に向けた看護技術の定量的特徴抽出	24. 6. 1	製品信頼性科:片桐真子	大阪府立大学
	25. 3.31		
フッ素系材料の耐宇宙環境性に関する研究	24. 6. 4	制御・電子材料科:岡本昭夫、筧 芳治	神戸大学
	25. 3.31		
貴金属微粒子の析出に関する研究	24. 6.11	金属表面処理科:西村 崇、中出卓男	大阪府立大学
	25. 3.29	森河 務	
		化学環境科:中島陽一	
アルミニウム合金の分析	24. 6.15	金属表面処理科:山内尚彦、塚原秀和	知的基盤部会
	24. 12. 28		分析分科会
マイクロ超音波センサの作製	24. 7. 2	制御・電子材料科:田中恒久	京都工芸繊維大学
	25. 3.29		
ステンレス溶射皮膜の低温プラズマ処理	24. 7. 2	金属表面処理科:足立振一郎、上田順弘	信州大学
	25. 3.29		
機能性有機材料の開発	24. 7. 9	繊維・高分子科:舘 秀樹、井上陽太郎	大阪府立大学
	25. 3.29		

題 目	期間	担 当 者	共同研究機関
POM 歯車に適したダイヤモンドライクカーボン(DLC)膜	24. 7. 9	金属表面処理科:三浦健一、小畠淳平	京都工芸繊維大学
の成膜方法の検討	25. 3.31		
ホログラフィの実用化に向けた3次元データの取得・計	24. 7.17	製品信頼性科:山東悠介	宇都宮大学
算方法に関する研究	25. 3.29	制御・電子材料科:佐藤和郎、村上修一	
メカトロ試験装置WG	24. 8. 1	制御・電子材料科:朴 忠植	独立行政法人産業
	25. 3.31		技術総合研究所
遷移金属添加Ⅲ族窒化物の光学的特性	24. 8.13	繊維・高分子科: 櫻井芳昭	京都工芸繊維大学
	25. 3.31		
ダイズにおけるセシウムの集積に関する研究	24. 9.10	繊維・高分子科:陰地威史、喜多幸司	京都大学
	25. 3.29		
着衣条件下の人体各部位の対流熱伝達率の評価	24. 8.20	製品信頼性科:山本貴則、平井 学	大阪府立大学
	25. 3.31	小田正明	
粉末冶金法による耐熱耐摩耗金属間化合物の創製と材料	24. 9.18	化学環境科:垣辻 篤	大阪府立大学
特性評価	25. 3.31		
生体反応計測による農機具(刈払機)の作業動作解析	24. 9.24	製品信頼性科:山本貴則	摂南大学
	24. 11. 30		
液中プラズマ殺菌における殺菌メカニズムの解明	24. 10. 1	化学環境科:井川 聡、中島陽一	大阪大学
	25. 3.31		
Ni 基金属間化合物を利用した摩擦攪拌接合技術の開発	24. 10. 15	金属材料科:平田智丈、田中 努	大阪府立大学
	25. 3.31		
表面機能性セラミックスのメソ構造解析・制御に関する	24. 10. 29	化学環境科:稲村 偉、渡辺義人	大阪市立大学
研究	25. 3.31		
走査透過電子顕微鏡を用いた機能性材料の微細構造観察	24. 12. 3	化学環境科:長谷川泰則	大阪府立大学
	25. 3.31		
刃物への DLC コーティング	25. 2.26	金属表面処理科:三浦健一、小畠淳平	福井県工業技術
	25. 3. 1		センター

(6)研究発表

当所が行った試験, 研究について、その成果を所研究発表会、各種学会・研究会等での口頭発表、および研究所報告の発刊、あるいは各学協会等への報文投稿等により公表して、普及を図った。(主発表者にアンダーラインを付記した。)

(A) 口頭発表 (292件)

【経営企画室】(4件)

発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
カーボンナノコイルを用いた電磁波吸収体の開発	野坂俊紀	南信州 CMC 活用研究会第3回定例会	特提 21001
		(飯田市) (25. 3. 6)	
遊星ボールミルを用いたポリイミド粒子とカーボン	浅尾勝哉、吉岡弥生、他	第58回高分子研究発表会(神戸市)	特提 23022
ナノチューブとの複合粒子の開発		(24. 7. 13)	
超耐熱性プラスチックの特徴と活用 ーポリイミド	浅尾勝哉	産創館テクニカルセミナー(大阪市)	特提 24105
微粒子の製造から応用展開を解説!!-		(24. 8. 31)	
ポリイミドとカーボンナノチューブとの複合化技術	浅尾勝哉	大阪府立産業技術総合研究所・大阪市	特提 24105
の開発		立工業研究所 第2回合同発表会	
		(和泉市) (25. 2. 5)	

【顧客サービス室】 (9件)

発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
TV ゲーム用モーションキャプチャを用いた人型ロボットの制御	井上幸二	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	_
ポリカーボネートの劣化評価の検討	岩崎和弥、小河 宏 吉岡弥生、奥村俊彦 陰地威史、浅尾勝哉	第 58 回高分子研究発表会(神戸市) (24. 7. 13)	指定 23003
プラスチックの耐候性評価 - 屋外曝露試験と高 照度キセノンウェザーメーター-	岩崎和弥、小河 宏 吉岡弥生、奥村俊彦 陰地威史、浅尾勝哉	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会(和泉市)(25.2.5)	指定 23003
内蔵センサを活用した情報機器のスマートメータ化	石島 悌、平松初珠 山東悠介	マルチメディア、分散、協調とモバイル (DICOMO2012)シンポジウム(加賀市) (24.7.5)	支援 23006
CPU クロック制御によるサーバのピークエネルギー 消費削減の試み	石島 悌、平松初珠 山東悠介、岩田晋弥	第 19 回インターネットと運用技術研究 発表会(松江市) (24. 9. 28)	支援 23006

			23
	発表者名	発表会名(年月日)	研究番号
CPU クロック制御によるサーバのピークエネルギー 消費削減の試み	石島 梯、平松初珠 山東悠介、岩田晋弥	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24035
フェイスブックの利用方法とそのリスク	新田 仁、平松初珠	生産技術研究会第62回パソコン通信 分科会(和泉市)(24.12.11)	指定 23005
研究所の法人化を陰で支えた産技研 IT 部門の機動的取り組み	新田 <u>仁</u> 、石島 悌 平松初珠、中西隆	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24035
災害救援者教育用アプリケーションの開発	平松初珠、石島 悌 片桐真子、他	Innovation Exchange Vol. 02(大阪市) (25. 2. 7)	特提 24103
【加工成形科】(44件)			
 発 表 題 目	発 表 者 名	発表会名 (年月日)	研究番号
両極性パルスによる焼結ダイヤモンドの放電加工	南久、渡邊幸司、他	第 206 回電気加工研究会(名古屋市) (24.7.13)	特提 23017
放電・レーザによるマイクロ加工 ーマイクロ放電 加工-	南久	MOBIO-Cafe 第3回産技研技術交流セミナー(東大阪市) (24.10.17)	基盤 24004
異種両極性パルスによる焼結ダイヤモンドの放電 加工	南久、渡邊幸司	大阪府立産業技術総合研究所・大阪市立工業研究所 第1回合同発表会 (大阪市)(24.11.1)	特提 23017
放電加工の基礎とマイクロ加工への応用	南久、渡邊幸司	ものづくり大学校「現場技術者のため の放電加工技術およびレーザ加工技術 実践講座」(東大阪市)(24.11.7)	基盤 24004
焼結ダイヤモンド工具の製作と微細複合加工への 適用	南久、渡邊幸司	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	特提 23017
金型の離型性向上の取り組み - 撥水・撥油・非粘着の超分子フッ素コーティングー	安木誠一、川村 誠、他	日本ゴム協会第 48 回金型研究分科会 (東京都) (25. 3. 14)	共同 24004
製品内部の微細構造を観察! - X線 CT 撮影の紹介-	<u>足立和俊</u> 、四宮徳章	大阪府立産業技術総合研究所・大阪市 立工業研究所 第1回合同発表会 (大阪市)(24.11.1)	_
Influence of Laser Heat Treatment on Fracture Strength of Ceramic Thin Film	萩野秀樹、山口拓人、 <u>他</u>	International Conference on Machine Design and Manufacturing Engineering (ICMDME 2012) (Jeju, Korea) (24.5.11)	
Quenching of Ceramic Coated Steels by Scanning Laser	_	International Conference on Machine Design and Manufacturing Engineering (ICMDME 2012) (Jeju, Korea) (24.5.11)	3
Heat Treatment of Ceramic Coated Steel by Scanning Laser	萩野秀樹、山口拓人、 <u>他</u>	15th International Conference on Experimental Mechanics (Porto, Portuguese Republic) (24.7.22)	特提 23011
レーザ加工	萩野秀樹	MOBIO-Cafe 第3回産技研技術交流セミナー(東大阪市) (24.10.17)	基盤 24002
ファイバーレーザ微細加工装置加工事例	萩野秀樹、山口拓人	大阪府立産業技術総合研究所・大阪市	基盤 24002

ファイバーレーザ微細加工装置加工事例 <u>秋野秀樹</u>、山口拓人 大阪府立産業技術総合研究所・大阪市 | 基盤 24002 武村守、四宮徳章 立工業研究所 第1回合同発表会 (大阪市)(24.11.1) ファイバーレーザ微細加工装置によるステンレス鋼、 大阪府立産業技術総合研究所・大阪市 萩野秀樹、山口拓人 基盤 24002 四宮徳章、武村 守 アルミ合金の薄板溶接 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 特提 23027 Possible Mechanism of Strength Change of Diamond 本田索郎、他 12th International Conference of the Depending on Thermal Histories Based on European Society for Precision Molecular Dynamics Analysis Engineering & Nanotechnology (Stockholm, Sweden) (24.6.5) 電気援用切削による鉄系材料の超精密切削加工 本田索郎、足立和俊 大阪府立産業技術総合研究所・大阪市 特提 22016 - アルカリイオン水ミストによる仕上げ面性状の 山口勝己、他 立工業研究所 第2回合同発表会 向上一 (和泉市) (25.2.5) 軸付電着ダイヤモンド砥石の放電ツルーイング 渡邊幸司、南 久 電気加工学会全国大会(北九州市) 基盤 24004 -砥石形状の機上計測法に関する検討-(24. 12. 6) 放電/研削ハイブリッド加工の高精度化 渡邊幸司、南 久 大阪府立産業技術総合研究所・大阪市 基盤 24004 -機上形状計測に関する検討-平松初珠、石島 悌 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 山口拓人、萩野秀樹 Surface Modification of Carbon Steel by Laser 2012 OPU-KIST-ECUST Joint 基盤 24005 Alloying with Carbide Forming Elements -Wear 武村守、他 Symposiumon Advanced Materials and Property and Carbide Morphologytheir Applications (Sakai, Japan) (24. 9. 11)

発表題目	発 表 者 名	発表会名(年月日)	研究番号
レーザ表面処理技術	<u>山口拓人</u>	堺市産業振興センター産業技術セミナー (堺市) (24.9.25)	特提 23003
レーザアロイングによる鋼表面へのバナジウム炭 化物含有高耐摩耗性合金層の形成	<u>山口拓人</u> 、萩野秀樹 武村 守、他	第78回レーザ加工学会講演会(浜松市) (24.12.13)	基盤 24005
ファイバーレーザによる局所的な耐食性皮膜の形成	山口拓人、萩野秀樹、他	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24005
レーザ表面処理による TiC/Fe 表面複合層の形成と 評価	<u>山口拓人</u> 、萩野秀樹 武村 守、他	日本金属学会春期(第 152 回)講演大会 (東京都) (25. 3. 29)	特提 23003
電解リン酸塩化成処理の冷鍛潤滑処理への適用 -処理時間の短縮とリング圧縮試験での評価-	白川信彦、 <u>他</u>	塑性加工春季講演会(小松市)(24.6.9)	_
燃料電池向け金属セパレータを想定した各種金属 薄板のプレス成形	<u>白川信彦</u> 、四宮徳章	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	特提 22022
改良バーフロー法による溶融樹脂流れに及ぼす金型 表面性状の影響の評価	吉川忠作、奥村俊彦	(公財)金型技術振興財団助成研究成果 発表会(第12回)(千葉市)(24.7.31)	特提 23005
改良バーフロー法による溶融樹脂流れにおよぼす 金型表面性状の影響の評価	吉川忠作、奥村俊彦	成形加工シンポジア'12(名古屋市) (24.11.30)	特提 23005
金型表面の粗さと表面処理が溶融樹脂流れにおよぼす影響の改良バーフロー法による評価	吉川忠作、奥村俊彦	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	特提 23005
PP/無機フィラー複合材料の少量(100g 程度)での 材料開発	<u>奥村俊彦</u> 、吉川忠作	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	支援 23001
Microstructure and Mechanical Properties of Co-33Cr-5Mo-0.3N Alloys Fabricated by Selective Laser Melting Process for Dental Applications	中本貴之、 <u>他</u>	9th World Biomaterials Congress(Chengdu, China) (24.6.3)	特提 23024
Anisotoropy of Microstructures and Mechanical Properties of Co-29Cr-6Mo Alloy Fabricated by Selective Laser Melting Process	中本貴之、 <u>他</u>	9th World Biomaterials Congress (Chengdu, China) (24.6.3)	特提 23024
チタン粉末のレーザ積層造形	中本貴之	日本チタン協会賛助会員部会西日本支部 総会・講演会・展示会・交流会・見学 会(尼崎市) (24.9.6)	特提 24004
レーザー積層造形法により作製したコバルトクロム 合金の機械的特性に及ぼす窒素添加の影響	中本貴之、他	日本金属学会秋期大会(松山市) (24.9.18)	特提 24107
金属粉末 RP(ラピッドプロトタイピング) 法による ものづくり	中本貴之	和泉イブニングセミナー(和泉シティ プラザ 生涯学習センター(和泉市)) (24.9.21)	プロ 24001
レーザー積層造形法により作製したコバルトクロム 合金の組織と機械的特性におよぼす造形雰囲気の 影響	中本貴之、 <u>他</u>	第60回日本歯科理工学会学術講演会(福岡市)(24.10.13)	特提 24107
レーザー積層造形法の歯科応用 -Co-Cr-Mo 合金の機械的特性と耐食性-	中本貴之、他	第60回日本歯科理工学会学術講演会 (福岡市)(24.10.13)	特提 24107
Effect of Building Atmosphere on the Microstructure and Mechanical Properties of Co-Cr-Mo Alloy Fabricated by Selective Laser Melting Process	中本貴之、 <u>他</u>	The 5th International Symposium on Designing, Processing and Properties of Advanced Engineering Materials (ISAEM-2012) (Toyohashi, Japan) (24.11.5)	特提 24107
Microstructure and Mechanical Properties of Nitrogen-Containing Co-Cr-Mo Alloy Fabricated by Selective Laser Melting Process for Dental Applications	中本貴之、 <u>他</u>	The 5th International Symposium on Designing, Processing and Properties of Advanced Engineering Materials (ISAEM-2012) (Toyohashi, Japan) (24.11.5)	特提 24107
レーザ積層造形 -金属粉末ラピッドプロトタイピング(RP)-	中本貴之	ものづくり大学校【現場技術者のため の放電加工技術およびレーザ加工技術 実践講座】(東大阪市)(24.11.20)	プロ 24001
レーザー積層造形法により作製したコバルトクロム 合金の組織と機械的特性におよぼす造形雰囲気の 影響	中本貴之、 <u>他</u>	粉体粉末冶金協会秋季大会(草津市) (24.11.21)	特提 24107
レーザー積層造形法により作製したCo-Cr-Mo合金の組織と機械的特性におよぼす造形雰囲気の影響	中本貴之、 <u>他</u>	日本バイオマテリアル学会シンポジウム 2012(仙台市) (24.11.27)	特提 24107
加工発熱を利用した SUS304 板の深絞り成形	四宮徳章	大阪府立産業技術総合研究所・大阪市立工業研究所 第1回合同発表会(大阪市)(24.11.1)	特提 24201

発表題目	発 表 者 名	発表会名(年月日)	研究番号
SUS304 板の深絞り成形における加工発熱の影響	四宮徳章、白川信彦	第63回塑性加工連合講演会(北九州市)	特提 24201
	中本貴之	(24. 11. 4)	
サーボプレスによる A1070 の衝撃押出し成形	四宮徳章、白川信彦	日本機械学会第20回機械材料・材料加	特提 24201
		工技術講演会(M&P2012)(大阪市)	
		(24. 12. 2)	
サーボプレスによるインパクト成形とその成形シ	四宮徳章、白川信彦	大阪府立産業技術総合研究所・大阪市	特提 24201
ミュレーション		立工業研究所 第2回合同発表会	
		(和泉市) (25. 2. 5)	

【金属材料科】(18件)

【金属材料科】(18件)			
発表題目	発 表 者 名	発表会名 (年月日)	研究番号
電界放射型電子プローブマイクロアナライザ	水越朋之	第10回技術シーズ発表会・特許フェアー	_
(FE-EPMA)の分析事例		(大阪市) (24.11.1)	
ガス消費の著しい削減が可能な鋼の新しいCOガス	水越朋之	八尾市ものづくり技術セミナー	中核 21001
浸炭熱処理法		(八尾市) (25. 1. 31)	
公設試における鋳造品の技術相談事例	武村 守	日本鋳造工学会鋳造設備研究部会	_
		(名古屋市) (24. 10. 26)	
低密度相の晶出を利用した引け巣のない軽量鋳造	松室光昭、武村守	大阪府立産業技術総合研究所・大阪市	特提 23006
材料	岡本明	立工業研究所 第1回合同発表会	
		(大阪市)(24.11.1)	
耐久性と省エネルギーを向上させた環境にやさしい	道山泰宏	八尾商工会議所イベント(八尾市)	特提 24202
金属熱処理法 一厚い表面硬化層形成を実現するチタン		(25. 1. 31)	
合金の新しい熱処理法一			
レーザを用いた溶体化処理によるチタン合金の表面	道山泰宏	大阪府立産業技術総合研究所・大阪市	特提 24202
時効硬化とその摩耗特性		立工業研究所 第2回合同発表会	
and the second second and the second	r === taxd	(和泉市) (25. 2. 5)	1.17
X線による残留応力と残留オーステナイトの測定	小栗泰造	西部金属熱処理工業協同組合	支援 19002
		第2回技術講習会(大阪市)(25.3.12)	
Application of Ni Base Dual Two-Phase	平田智丈、他	9th International Friction Stir	_
Intermetallic Alloy Tools for Joining SUS430		Welding Symposium (Huntsville, USA)	
Plates		(24. 5. 15)	
ステンレス鋼の摩擦攪拌接合	平田智丈、他	日本機械学会年次大会(金沢市)	_
共通試料による試験結果 I	亚田知士 田古 叔 小	(24.9.11) 第 90 回軽金属シンポジウム(東京都)	
共連政権による政策指案Ⅰ	平田智丈、田中 努、他	第 90 回軽金属シンホンリム(東京都) (24.9.14)	_
摩擦攪拌接合法によるアルミニウムと鋼の異種金属	平田智丈、田中 努	第 90 回軽金属シンポジウム(東京都)	特提 23001
学院見什安古伝によるアルミーリムと刺の共催並属 接合	<u>平田省文</u> 、田中 安 白川信彦、四宮徳章、他	第 90 回転金属シンホンリム(東京部) (24. 9. 14)	付定 23001
15日 Ni 基金属間化合物を利用した摩擦攪拌接合技術	平田智丈、田中努、他	大阪府立産業技術総合研究所・大阪市	共同 23003
NI 左立周間に古物を利用しに手掠視針女白X州	<u>平田省文</u> 、田中 安、他 	立工業研究所 第1回合同発表会	共同 23003
		(大阪市) (24.11.1)	
軽金属材料における摩擦攪拌接合(FSW)	平田智丈	ものづくり基盤技術セミナー(京都市)	特提 23001
在亚州州代(1917)。到李州是一个人	<u>ТШВА</u>	(24. 12. 17)	11 JAE 25001
Ni 基金属間化合物を利用した摩擦攪拌接合技術	平田智丈、田中 努、他	大阪府立産業技術総合研究所・大阪市	共同 24118
11 盆並園間目		立工業研究所 第2回合同発表会	7,1721110
		(和泉市) (25. 2. 5)	
異種金属接合 - 摩擦攪拌接合(FSW) -	平田智丈、田中 努、他	新分野進出支援講座「異種金属接合技	特提 24014
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<u> </u>	術セミナー」(綾部市) (25.3.6)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SEM/EBSD による結晶方位分布評価	平田智丈、田中 努、他	西部金属熱処理工業協同組合	基盤 24007
		第2回技術講習会(大阪市)(25.3.12)	
鉄鋼とアルミニウム合金を接合したテーラード	田中 努、平田智丈	大阪府立産業技術総合研究所・大阪市	特提 23001
ブランクのプレス加工技術	白川信彦、四宮徳章	立工業研究所 第1回合同発表会	
		(大阪市) (24.11.1)	
鉄鋼とアルミニウム合金を接合したテーラード	田中努、平田智丈	大阪府立産業技術総合研究所・大阪市	特提 24014
ブランクのプレス加工技術	四宮徳章、白川信彦	立工業研究所 第2回合同 発表会	
		(和泉市) (25. 2. 5)	

【金属表面処理科】(46件)

発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
めっき皮膜の密着性入門	森河 務	日本鍍金研究会十日会6月例会(講習会)	先行 22003
		(東京都) (24. 6. 28)	
環境対応型工業用クロムめっきの開発	<u>森河 務</u> 、中出卓男	関西表面技術シンポジウム(大阪市)	特提 16002
	長瀧敬行	(24. 7. 25)	
ダイヤモンドライクカーボン(DLC) コーティング技	三浦健一	堺市産業振興センター産業技術セミナー	先行 16005
術講座		(堺市) (24. 10. 9)	

発表題目	発表者名	発表会名(年月日)	研究番号
機械的評価の取りまとめについて	三浦健一	産業技術連携推進会議技術向上支援事	先行 16005
- トライボロジー特性評価について-		業「ものづくりに向けた DLC コーティ	
		ング評価法の検討」第2回ワーキング	
ボニュレンプ心中人刑田主王加四・ニーニング時	— \= \tau_1 \tau_2 \tau	グループ会議(池田市) (24.10.12)	##&il 10004
ガラスレンズ形成金型用表面処理コーティング膜	三浦健一、他	大阪府立産業技術総合研究所・大阪市	共創 18004
		立工業研究所 第 1 回合同発表会 (大阪市) (24. 11. 1)	
ドライコーティング(1)、(2)	三浦健一	大阪高等めっき技術訓練校(大阪市)	先行 14022
1.77 - 7.407 (1), (2)	<u></u>	(24. 11. 15)	7611 14022
PVD 硬質膜への微細孔形成による潤滑性向上	三浦健一	第3回熱処理技術セミナー(東京都)	特提 22012
TID KAMA MAIN IN MANAGE OF THE TANK		(24. 11. 16)	14175 22012
UBMS 法によるDLC膜の表面形態に及ぼす成膜条件の	三浦健一、小畠淳平、他	第 127 回講演大会(埼玉県南埼玉郡)	共同 24008
影響		(25. 3. 18)	
Mg-Li 合金の比強度に及ぼすアルミニウム量の影響	上田順弘、岡本 明、他	大阪府立産業技術総合研究所・大阪市	共同 23006
		立工業研究所 第2回合同発表会	
		(和泉市) (25. 2. 5)	
SUS316L 溶射皮膜への複合低温プラズマ処理	足立振一郎、上田順弘	日本溶射学会第95回全国講演大会	特提 23018
		(広島市) (24. 6. 19)	
Surface Hardness Improvement of Plasma Sprayed	足立振一郎、上田順弘	The Fourth International Conference	特提 23018
AISI 316L Stainless Steel Coating by Low		on The Characterization and Control	
Temperature Plasma Carburizing		of Interfaces for High Quality	
		Advanced Materials (Kurashiki, Japan) (24.9.3)	
溶射技術講座	足立振一郎	切り 切り 切り 切り 切り 切り 切り 切り	特提 24101
(台为17文/四两/主	<u>XE-77.1</u> X K 3	(堺市) (24.10.3)	777年24101
Combined Low Temperature Plasma Carburizing and	足立振一郎、上田順弘	The 5th Asian Thermal Spray	特提 24101
Nitriding of Plasma Sprayed Austenitic Stainless	ALEMAN, LEINGA	Conference (Tsukuba, Japan)	111/2 21101
Steel Coating		(24. 11. 26)	
SUS316L 溶射皮膜への低温プラズマ処理	足立振一郎、上田順弘	大阪府立産業技術総合研究所・大阪市	特提 24101
		立工業研究所 第2回合同発表会	
		(和泉市) (25. 2. 5)	
希土類元素間の ICP-AES における干渉影響	塚原秀和	大阪府立産業技術総合研究所・大阪市	支援 21003
		立工業研究所 第2回合同発表会	
de Lider and a second	too I. est	(和泉市) (25. 2. 5)	
産技研における金属分析	岡本 明	大阪府立産業技術総合研究所・大阪市	_
		立工業研究所 第1回合同発表会	
金属分析の製品開発、トラブル品への適用事例	岡本 明	(大阪市) (24.11.1) 大阪府立産業技術総合研究所・大阪市	_
・	<u>m/4 71</u>	立工業研究所 第2回合同 発表会	
		(和泉市) (25. 2. 5)	
プラズマ窒化処理技術	榮川元雄	堺市産業振興センター産業技術セミナー	基盤 24009
	<u> </u>	(堺市) (24. 10. 16)	
DLC Coating on Low Temperature Plasma Nitrided	榮川元雄、上田順弘、他	PSE2012 (13th International	共同 23008
or Carburized Austenitic Stainless Steel		Conference on Plasma surface	
		engineering) (Garmisch-Partenkirchen,	
		Germany) (24. 10. 22)	
小物部品のバレル式プラズマ浸炭・窒化大量処理シ	<u>榮川元雄</u> 、上田順弘、他	大阪府立産業技術総合研究所・大阪市	特提 22001
ステム		立工業研究所 第1回合同発表会	
	## m ₹3	(大阪市) (24.11.1)	計長 00001
	<u>榮川元雄</u> 、上田順弘	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27)	特提 22001
3 4 4 5 5 15		\PA milli/\24 2.17	
システム アカティブフカリーンプラブラ岸ル加理技術			#国22000
システム アクティブスクリーンプラズマ炭化処理技術	榮川元雄、上田順弘、 <u>他</u>	日本熱処理技術協会秋季講演大会	共同 23008
アクティブスクリーンプラズマ炭化処理技術	_	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27)	
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性	榮川元雄、上田順弘、 <u>他</u> <u>榮川元雄</u> 、上田順弘	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市	共同 23008 基盤 24009
アクティブスクリーンプラズマ炭化処理技術	_	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27)	
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性	_	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会	
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性 向上	<u>榮川元雄</u> 、上田順弘	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5)	基盤 24009
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性 向上 オーステナイト系ステンレス鋼に形成したS相に対 する、ショットピーニングによる改質	祭川元雄、上田順弘 祭川元雄、上田順弘、 <u>他</u>	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5)	基盤 24009 共同 23008
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性 向上 オーステナイト系ステンレス鋼に形成したS相に対	<u>榮川元雄</u> 、上田順弘	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) アクティブスクリーンプラズマ炭窒化	基盤 24009
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性 向上 オーステナイト系ステンレス鋼に形成したS相に対 する、ショットピーニングによる改質 小物部品のバレル式プラズマ浸炭・窒化処理システム の開発	祭川元雄、上田順弘、 <u>他</u> 祭川元雄、上田順弘、 <u>他</u>	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) アクティブスクリーンプラズマ炭窒化 技術講演会(大阪市) (25.3.21)	基盤 24009 共同 23008 特提 22001
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性 向上 オーステナイト系ステンレス鋼に形成したS相に対 する、ショットピーニングによる改質 小物部品のバレル式プラズマ浸炭・窒化処理システム	祭川元雄、上田順弘 祭川元雄、上田順弘、 <u>他</u>	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) アクティブスクリーンプラズマ炭窒化 技術講演会(大阪市) (25.3.21) 大阪府立産業技術総合研究所・大阪市	基盤 24009 共同 23008
アクティブスクリーンプラズマ炭化処理技術 プラズマ窒化・浸炭における後熱処理による耐食性 向上 オーステナイト系ステンレス鋼に形成したS相に対 する、ショットピーニングによる改質 小物部品のバレル式プラズマ浸炭・窒化処理システム の開発	祭川元雄、上田順弘、 <u>他</u> 祭川元雄、上田順弘、 <u>他</u>	日本熱処理技術協会秋季講演大会 (吹田市) (24.11.27) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) 大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市) (25.2.5) アクティブスクリーンプラズマ炭窒化 技術講演会(大阪市) (25.3.21)	基盤 24009 共同 23008 特提 22001

 発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
UBM スパッタ法による Ti 基金属ガラス皮膜の形成	小畠淳平、三浦健一	日本金属学会春期(第 152 回)講演大会 (東京都) (25. 3. 27)	基盤 24010
電解処理法による水素発生用電極の作製	中出卓男	第 19 回表面技術分科会(東京都) (24. 6. 8)	特提 24003
電解処理法による白金ナノ粒子析出電極の作製	中出卓男、西村 崇	関西表面技術シンポジウム(大阪市) (24.7.25)	特提 24003
めっき技術の基礎とその応用	中出卓男	ものづくり大学校・夜間講座:めっき技 術ならびに腐食防食技術の基礎講座 (東大阪市)(24.10.5)	基盤 24011
電解処理法による白金ナノ粒子析出電極の製造	中出卓男	KYMFES 第 125 回研究発表会(和泉市) (24. 10. 25)	基盤 24011
白金使用量を大幅に低減した水素製造用電極とその 作製法	中出卓男、西村 崇 森河 務	大阪府立産業技術総合研究所・大阪市立工業研究所 第1回合同発表会 (大阪市)(24.11.1)	特提 24003
白金使用量を大幅に低減した水素製造用電極とその 作製法		第 2 回特許ビジネス展示会(東大阪市) (25. 1. 17)	特提 24003
白金使用量を大幅に低減した触媒電極とその耐久性	中出卓男	府市合同フォーラム(大阪市)(25.2.28)	特提 24003
気化性さび止め性試験における前処理改善方法の 検討	<u>左藤眞市</u>	第 125 回 KYMFES (関西金属表面処理若手研究者連絡会議) 例会 (和泉市) (24, 10, 25)	受託 22001
電析法による白金使用量を大幅に低減した水素製造 電極の作製法	西村 崇、森河 務	JST 新技術説明会(東京都)(25.3.4)	特提 24003
電解法による水素発生用電極の作製とその耐久性 評価	西村 崇、中出卓男 森河 務	表面技術協会第 127 回 講演大会 (埼玉県南埼玉郡) (25. 3. 19)	基盤 24011
Preparation of Shape-Controlled Pt Nanoparticles by Galvanostatic Electrolysis	西村 崇、中出卓男 森河 務、他	PRiME 2012(第6回日米合同大会) (Honolulu, USA) (24.10.10)	基盤 24011
定電流電解による白金微粒子の形態制御	西村 崇	関西金属表面処理若手研究者連絡会議 (KYMFES)第 125 回例会(和泉市) (24.10.25)	基盤 24011
電析法を用いた白金ナノ微粒子の形態制御	西村 崇、中出卓男 森河 務	大阪府立産業技術総合研究所・大阪市 立工業研究所 第1回合同発表会 (大阪市)(24.11.1)	基盤 24011
貴金属微粒子の析出に関する研究	西村 崇、中出卓男 中島陽一、森河 務、 <u>他</u>	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会(和泉市)(25.2.5)	共同 24104
電解処理法による立方体状白金微粒子の形成	西村 崇、中出卓男 森河 務、他	電気化学会第80回大会(仙台市) (25.3.30)	基盤 24011
チタンへの前処理方法がめっき密着性に及ぼす影響	長瀧敬行	電気鍍金研究会 6 月研究例会(大阪市) (24.6.6)	先行 23004
Ti 上へのめっき前処理方法と密着性評価の検討	長瀧敬行	第 125 回関西金属表面処理若手研究者 連絡会議(KYMFES)例会(和泉市) (24. 10. 25)	基盤 24012
めっき密着性の定量的評価方法の検討	長瀧敬行、中出卓男 森河 務	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会(和泉市)(25.2.5)	基盤 24012
各種めっき密着性試験方法の比較検討	<u>長瀧敬行</u> 、中出卓男 森河 務	表面技術協会第 127 回講演大会 (埼玉県南埼玉郡) (25. 3. 18)	基盤 24012

【制御・電子材料科】 (47件)

発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
Fabrication and Evaluation of Solid Oxide Fuel	筧 芳治、佐藤和郎	221st Electrochemical Society	共同 23016
Cells with Double Electrolyte for Operating at	日下忠興、他	Meeting (Seattle, USA) (24.5.6)	
Low Temperature			
スパッタ法による Cr-SiC 高温用歪抵抗薄膜の作製	<u>筧</u> 芳治、佐藤和郎、他	日本セラミックス協会第25回秋季シ	受託 23017
		ンポジウム(名古屋市) (24.9.20)	
高温用圧力センサへの応用を目指した Cr-SiC 系歪	<u>筧</u> 芳治、佐藤和郎	産業技術連携推進会議情報通信・エレ	受託 23017
抵抗薄膜の作製	松永 崇、日下忠興、他	クトロニクス部会電子技術分科会	
		第 13 回高機能材料・デバイス研究会	
		(郡山市) (24. 10. 25)	
ホール効果測定装置を用いた測定事例	<u>筧 芳治</u> 、佐藤和郎	大阪府立産業技術総合研究所・大阪市	_
	山田義春	立工業研究所 第1回合同発表会	
		(大阪市) (24.11.1)	

発表題目	発表者名	発表会名(年月日)	研究番号
酸化クロム薄膜ひずみゲージを使用した触覚セン サーアレイの簡便な製造方法	第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	第2回特許ビジネス展示会 in MOBIO (東大阪市)(25.1.17)	特府 17005
Development of CrSiC/Cr/CrSiC Three-Layered Strain sensitive Films for High-Temperature Pressure Sensors	<u>筧</u> 芳治、佐藤和郎 松永崇、日下忠興、他	第5回先進プラズマ科学と窒化物及び ナノ材料への応用に関する国際シンポ ジウム(ISPlasma 2013)(名古屋市) (25.1.29)	受託 23017
大阪府立産業技術総合研究所の研究紹介	<u>筧 芳治</u> 、宇野真由美村上修一、金岡祐介	第4回低温工学・超電導学会関西支部 講演会(大阪市)(25.2.1)	_
積層構造を利用した高温用 Cr 系歪抵抗薄膜の作製	<u>第 芳治</u> 、佐藤和郎 松永 崇、日下忠興、他	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会(和泉市)(25.2.5)	受託 23017
PLD 法単一プロセスによる低温作動型二重電解質 SOFC の開発	第一方治、佐藤和郎 日下忠興、 <u>他</u>	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	共同 23016
Cr-SiC/Cr/Cr-SiC 高温用歪抵抗薄膜の作製	<u>第</u> 芳治、佐藤和郎 松永 崇、日下忠興、他	日本セラミックス協会年会(東京都) (25.3.17)	受託 23017
超伝導素子を用いた中性子検出装置	佐藤和郎	第2回特許ビジネス展示会 in MOBIO (東大阪市)(25.1.17)	特提 19013
ZnO-SnO ₂ 系材料を用いた薄膜トランジスタの作製	佐藤和郎、村上修一 筧 芳治	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24014
ZnO-SnO ₂ 薄膜を用いた TFT の低温形成	佐藤和郎、山田義春村上修一、第一芳治 櫻井芳昭	第60回応用物理学会春季学術講演会 (厚木市)(25.3.27)	特提 24017
MEMS センサ及びセンシングシステムの開発例	田中恒久、村上修一 宇野真由美、金岡祐介 松永 崇、筧 芳治 佐藤和郎、日下忠興	センサエキスポジャパン 2012 次世代 センサフォーラム(東京都) (24. 10. 10)	_
圧電型 MEMS 超音波センサの特性改善	田中恒久、他	電気関係学会関西連合大会(吹田市) (24.12.8)	共同 24105
圧電型 MEMS 超音波センサ構造の最適化	田中恒久、他	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同 発表会 (和泉市)(25.2.5)	共同 24105
ドライエッチング技術を用いたシリコン基板の垂直 加工	田中恒久、宇野真由美、他	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	共同 23020
Preparation of P(VDF/TrFE/CTFE) Terpolymer Thin Films for Infrared Sensor of Dielectric Bolometer Mode	<u>村上修一</u> 、佐藤和郎 宇野真由美、櫻井芳昭	Fifth International Conference on Optical, Optoelectronic and Photonic Materials and Applications 2012 (ICOOPMA 2012) (Nara, Japan) (24.6.3)	先行 23012
強誘電体 MEMS による振動発電	村上修一、他	日本セラミックス協会第 25 回秋季シ ンポジウム(名古屋市) (24. 9. 19)	特共 24003
Characterization of Ferroelectric MEMS Vibration Energy Harvester	村上修一、他	IUMRS-International Conference on Electronics Materials (IUMRS-ICEM 2012) (Yokohama, Japan) (24.9.23)	特共 23004
MEMS 技術を使った振動発電デバイスの開発	村上修一、他	センサエキスポジャパン 2012 次世代 センサフォーラム(東京都) (24.10.10)	特共 24003
圧電体薄膜を用いた振動発電 MEMS デバイス	村上修一	大阪府立産業技術総合研究所・大阪市 立工業研究所 第1回合同発表会 (大阪市)(24.11.1)	特共 24003
Fabrication of Piezoelectric MEMS Vbration Energy Harvester with Low Resonant Frequency	村上修一、中出卓男 長瀧敬行、他	37th International Conference and Expo on Advanced Ceramics and Composites (ICACC13) (Daytona Beach, USA) (25.1.31)	特共 24003
MEMS 技術を使った振動発電デバイスの開発	村上修一、中出卓男 長瀧敬行、中嶋隆勝、他	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会(和泉市)(25.2.5)	特共 24003
強誘電体 MEMS 圧電型振動発電デバイスの開発	村上修一、中出卓男 長瀧敬行、中嶋隆勝、他	電気学会全国大会(名古屋市) (25.3.20)	特共 24003
MEMS 技術を使った電子デバイスの開発	村上修一	先端技術セミナー(大阪市)(25.3.26)	-
BiFeO:薄膜を用いた MEMS 振動発電素子の発電特性	村上修一、他	第60回応用物理学会春季学術講演会 (厚木市)(25.3.27)	特共 24003

 発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
スプリットゲート構造を有する高速動作塗布型	宇野真由美、他	秋季応用物理学会学術講演会(松山市)	特提 24001
OFET	7 7 7 7 7 7 1 <u>1</u>	(24. 9. 13)	144/6=====
三次元構造を利用した高出力フレキシブルポリマー	宇野真由美、他	秋季応用物理学会学術講演会(松山市)	共同 24110
TFT		(24. 9. 13)	
フレキシブルな高性能3次元有機トランジスタ	宇野真由美	大阪府立産業技術総合研究所・大阪市	特提 23029
		立工業研究所 第1回合同発表会	
		(大阪市) (24.11.1)	
High-Mobility Organic Active Matrices Based on	宇野真由美、金岡祐介、他	IDW/AD 2012 (The 19th International	特提 24001
Solution-Crystallized TFT Arrays		Display Workshops in conjunction	
		with Asia Display 2012)	
		(Kyoto, Japan) (24. 12. 4)	
Crystalline Organic TFTs for Active-Matrix	宇野真由美、金岡祐介、他	IDW/AD 2012 (The 19th International	特提 24001
Display Panels		Display Workshops in conjunction	
		with Asia Display 2012)	
		(Kyoto, Japan) (24. 12. 4)	
高性能なフレキシブル3次元有機トランジスタ	字野真由美、金岡祐介、他	大阪府立産業技術総合研究所・大阪市	特提 23029
		立工業研究所 第2回合同 発表会	
		(和泉市) (25. 2. 5)	
高速応答 3 次元有機トランジスタ	宇野真由美、山田義春、他	第60回応用物理学会春季学術講演会	特提 24108
	-Lorente I. V.	(厚木市) (25. 3. 27)	41.10
高性能なフレキシブル3次元有機トランジスタ	宇野真由美	JST 推薦シーズ新技術説明会(東京都)	特提 23029
	10 2 11 11	(25. 3. 11)	77.7.000.0
1,700W/mK を有する高熱伝導グラファイトの絶縁化	松永崇、他	池田泉州〉ビジネス交流会 2012	受託 22007
TAU. b.) #50#44, 124 12 12 12 13 14 15 17 18	FW 7 H	(大阪市) (24.5.8)	H-/- 00010
酸化クロム薄膜ひずみゲージを用いた柔軟な四軸	松永崇	日本真空学会 スパッタリング及びプ	先行 23013
触覚センサの開発		ラズマプロセス技術部会(SP 部会)第	
		129 回定例研究会テーマ: 「広がるコー	
触覚センサ	松永 崇	ティング技術」(東京都)(24.8.2) センサエキスポジャパン 2012 次世代	先行 23013
照見ピンリ	松永崇	センサフォーラム(東京都)(24.10.10)	元11 23013
触覚センサー及びその製造方法	松永崇	大阪府立産業技術総合研究所・大阪市	先行 23013
	松水 景	立工業研究所 第1回合同発表会	7511 23013
		(大阪市) (24. 11. 1)	
酸化クロム薄膜ひずみゲージを用いた触覚センサ	松永崇、金岡祐介	第53回真空に関する連合講演会	先行 23013
システムの開発	日下忠興	(神戸市) (24. 11. 15)	76/1 20010
触覚センサー及びその製造方法	松永崇	大阪府立大学・大阪市立大学 ニューテ	先行 23013
7201 7 700 00 200000	<u> </u>	クノフェア 2012 (大阪市) (24. 11. 21)	7011
酸化クロム薄膜ひずみゲージを用いた触覚センサ	松永崇、金岡祐介	大阪府立産業技術総合研究所・大阪市	先行 23013
システムの開発	日下忠興	立工業研究所 第2回合同発表会	210
		(和泉市) (25. 2. 5)	
イオン液体を用いた低電圧駆動有機単結晶トラン	車 溥相、宇野真由美、他	第60回応用物理学会春季学術講演会	特提 24203
ジスタの高速化		(厚木市) (25. 3. 27)	
Android 端末によるネットワーク機器制御方法	朴 忠植、北川貴弘	大阪府立産業技術総合研究所技術フォ	基盤 24015
- <u>-</u>		ーラム(和泉市) (24. 12. 14)	
Android 端末によるネットワーク機器制御事例	朴 忠植、北川貴弘	近畿職業能力開発大学校ポリテックビ	基盤 24015
		ジョン(岸和田市) (25. 2. 22)	
インターネット上で操作できるグラフィックスの	大川裕蔵	大阪府立産業技術総合研究所・大阪市	基盤 24016
作成		立工業研究所第2回合同発表会	
		(和泉市) (25. 2. 5)	
三次元レーダー用超音波アレイセンサ	金岡祐介	センサエキスポジャパン 2012 次世代	特提 21004
		センサフォーラム(東京都) (24.10.10)	

【製品信頼性科】(29件)

発 表 題 目	発 表	者 名	発表会名(年月日)	研究番号
EMC 評価・解析システムおよび雷サージ試験システム	松本元一		大阪府立産業技術総合研究所	_
の講習会			技術フォーラム(和泉市) (24. 10. 18)	
非破壊検査のためのミリ波合成開口イメージング	田中健一郎、	松本元一	第60回応用物理学会春季学術講演会	基盤 24018
Synthetic Aperture Millimeter-Wave Imaging for			(厚木市) (25. 3. 27)	
Nondestructive Inspection				
EMC 評価・解析システムおよび雷サージ試験システム	田中健一郎、	松本元一	大阪府立産業技術総合研究所技術	_
の講習会			フォーラム(和泉市) (24. 10. 18)	
ミリ波による非破壊検査技術の開発	田中健一郎、	松本元一	大阪府立産業技術総合研究所・大阪市	基盤 24018
			立工業研究所 第2回合同発表会	
			(和泉市) (25. 2. 5)	

発表題目	発 表		発表会名(年月日)	研究番号
Control of the Directionality of Wavefront by 3-D	<u>山東悠介</u> 、他		HoloMet 2012(宇都宮市)(24.7.24)	共同 24109
Fourier Spectral Filtering toward Applicative				
Computer—Generated Hologram				
3次元空間周波数フィルタリングによる計算機合成	<u>山東悠介</u> 、他		日本光学会年次学術講演会(東京都)	共同 24109
レインボーホログラム				
植物工場用光源の光利用効率向上に向けた回折素子	<u>山東悠介</u> 、石		大阪府立産業技術総合研究所・大阪市	基盤 24019
による配光制御	大川裕蔵、岩	田晋弥	立工業研究所 第2回合同発表会	
			(和泉市) (25. 2. 5)	
ミラー走査による計算機ホログラムの画素数拡大	山東悠介、他		第60回応用物理学会春季学術講演会	共同 24109
と高速計算法			(厚木市) (25. 3. 30)	
企業における省エネ対策あれこれ	村上義夫		大阪府立産業技術総合研究所・大阪市	_
			立工業研究所 第2回合同発表会	
			(和泉市) (25. 2. 5)	
製品衝撃強さ試験のための統計分析手法についての	中嶋隆勝		日本包装学会第21回年次大会	基盤 24020
検討			(東京都) (24.7.5)	
製品衝撃強さ試験方法に関する概要説明および実演	中嶋隆勝		輸送包装オープンラボ 2012 (和泉市)	支援 23008
	1		(24. 9. 21)	
輸送包装関連の研究動向 -JPI、包装学会、	中嶋隆勝		包装管理士会第13回会員無料ミニセ	基盤 24020
IAPRI (国際包装研究機関連合) などー	1 1/91		ミナー(大阪市) (24.9.27)	221111, = 10=0
製品衝撃強さ試験結果の統計的解析方法	中嶋隆勝		大阪府立産業技術総合研究所・大阪市	基盤 24020
表面国争/ACでW次個本ッパの日日が刊////A			立工業研究所 第1回合同発表会	<u> </u>
			(大阪市) (24.11.1)	
衝撃を受けた段積み貨物について	高田利夫、津	· III £n ld ;	第50回全日本包装技術研究大会	基盤 24021
国軍を支げた政債の負物について 一固定方法の違い	同田小人、伴	- 四个1470人	(千葉市) (24.11.30)	全盆 24021
一回たガ伝い違いー 衝撃を受けた段積み貨物の損傷比較	古田利士		大阪府立産業技術総合研究所・大阪市	基盤 24021
関挙を受けた权惧み見物の損場比較	高田利夫			<u> </u>
			立工業研究所 第2回合同発表会	
ハーリマン ゴリートマの吹曲リモケート			(和泉市) (25. 2. 5)	₩
インテリアファブリックスの断熱性評価と省エネ	山本貴則、山		繊維学会年次大会(東京都)(24.6.8)	受託 22019
効果の検討	平井学、木			TI = 4 00010
インテリアファブリックス製品による省エネ効果	山本貴則、山		大阪府立産業技術総合研究所・大阪市	受託 22019
に関する実験的検討	平井学、木	对俗和、他	立工業研究所 第2回合同発表会	
		. 11. 326 . 11.	(和泉市) (25. 2. 5)	II. El outub
人工気象室を利用した日射および風刺激が人体温	山本貴則、平	并 字、 <u>他</u>	大阪府立産業技術総合研究所・大阪市	共同 24113
冷感に与える影響に関する研究			立工業研究所 第2回合同発表会	
			(和泉市) (25. 2. 5)	* *
人の印象に考慮した気づきやすいサイン音のデザ	片桐真子、山		大阪府立産業技術総合研究所・大阪市	先行 23006
イン 一心理面と生理面からのアプローチー	平井学、木	村裕和、他	立工業研究所 第1回合同発表会	
			(大阪市) (24.11.1)	
生体データから見る看護実践知の特徴	片桐真子、他	:	第32回医療情報学連合大会	共同 24102
採血技術実施時の脳波および心拍数の分析からー			(第13回日本医療情報学会学術大会)	
			(新潟市) (24. 11. 15)	
生体データから見る看護実践知の特徴	片桐真子、他		大阪府立産業技術総合研究所・大阪市	共同 23021
採血技術実施時の脳波および心拍数の分析から			立工業研究所 第2回合同発表会	
			(和泉市) (25. 2. 5)	
緩衝設計に役立つクッションカーブの作成方法の	津田和城		輸送包装オープンラボ 2012 (和泉市)	支援 23008
紹介および実演			(24. 9. 21)	
蓄積疲労スペクトルを用いた振動評価法の提案	津田和城、中	嶋隆勝	自動車技術会秋季大会(大阪市)	基盤 24023
			(24. 10. 4)	
蓄積疲労スペクトルを用いた振動評価法の提案	津田和城、中	嶋隆勝	わかやまテクノ・ビジネスフェア'12	特提 21008
			わかやま発技術シーズ発表会	
			(和歌山市) (24.11.13)	
蓄積疲労スペクトルを用いた実環境と等価な振動	津田和城、中	嶋隆勝	大阪府立産業技術総合研究所・大阪市	基盤 24023
試験環境の再現			立工業研究所 第2回合同 発表会	
			(和泉市) (25. 2. 5)	
接触帯電特性測定装置の開発	平井 学		大阪府立産業技術総合研究所・大阪市	特提 24109
			立工業研究所 第2回合同発表会	
			(和泉市) (25. 2. 5)	
Non-Gaussian Random Vibrations Using Kurtosis	細山 亮、中	嶋隆勝、他	18th IAPRI World Packaging	基盤 24024
The state of the s	<u> </u>	"AI TANN 1 153	Conference 2012 (California, USA)	1021
			(24. 6. 19)	
	細山 亮、中	嶋隆勝	日本包装学会 第 21 回年次大会	基盤 24024
スタックで CICARA アンドアノマ / AMSAITAKA	<u>лян ус</u> , Т	· 邓丁生//万	(東京都)(24.7.5)	215mi 21021
非ガウス型ランダム振動試験の有効性検証実験		嶋隆勝、他	大阪府立産業技術総合研究所・大阪市	基盤 24024
クトノタ ソヘ´王ノイク ムイルア男ルアマルサンンク月タメリイ生快証夫糠	細山 亮、中	"局性伤、他		玄监 24024
			立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	

【化学環境科】(47件)

光表題目	発 表 者 名	発表会名(年月日)	研究番号
高分子アゾ重合開始剤を用いたゲル微粒子の調製 におよぼす反応条件の影響および複合化	<u>木本正樹</u> 、櫻井芳昭 日置亜也子	日本接着学会年次大会(福島市) (24.6.30)	先行 23015
ゲル微粒子の形態制御と複合化	木本正樹	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	先行 23015
ゲル微粒子の形態制御と複合化	木本正樹	ナノテクフォーラム 2013 (豊中市) (25. 2. 19)	先行 23015
複合微粒子の調製方法と応用展開	木本正樹	第 5 回元素ハイブリッド研究会 (大阪市) (25. 3. 13)	_
消臭材料の性能評価方法	<u>小河 宏</u>	衛生技術展(大阪市)(24.7.5)	受託 20014
高分子用添加剤のHPLC、GC/MS による分析(2)	小河 宏、吉岡弥生 岩崎和弥、奥村俊彦 陰地威史、浅尾勝哉	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24027
ピリジンおよび水添加系で作製された芳香族ポリ アミド微粒子の比較	吉岡弥生、浅尾勝哉	第 61 回高分子学会年次大会(横浜市) (24. 5. 31)	特提 23022
沈澱重合法によるナノファイバー状芳香族ポリ アミド構造体の作製	吉岡弥生、浅尾勝哉	繊維学会秋季研究発表会(福井市) (24.9.25)	特提 24105
Structure and Property of Self-Assembled Aromatic Polyamide Nanofibers	吉岡弥生	The 9th SPSJ International Polymer Conference (IPC 2012) (Kobe, Japan) (24.12.13)	特提 24105
粒子サイズの揃った芳香族ポリアミド微粒子の製造 方法		第 2 回特許ビジネス展示会(東大阪市) (25. 1. 17)	特府 17006
ナノ・サブミクロンサイズの機能性芳香族ポリアミ ド微粒子の作製		次世代ナノテクフォーラム(豊中市) (25. 2. 19)	特提 24105
Dental Treatment Using LF Plasma Jet with Reduced pH Method -Disinfection of Dentin-	井川 聡、他	4th International Conference on Plasma Medicine (Orléans, France) (24.6.18)	特共 23001
Inovative Disinfection for Dental and Surgical Therapies Combined with the Plasma Treated Water and Reduced pH Method		4th International Conference on Plasma Medicine (Orléans, France) (24.6.21)	特共 23001
低pH 法を用いたプラズマ液中殺菌とその分子生物 学的メカニズム	井川 聡、他	静電気学会バイオ・プラズマプロセス 研究委員会(吹田市) (24.8.3)	特共23001
プラズマの歯科治療応用-感染歯質の殺菌-	井川 聡、他	プラズマ・核融合学会第 29 回年会 (春日市) (24. 11. 27)	特共 24001
プラズマ処理水と低pH法を用いた先進的プラズマ 殺菌消毒法	井川 聡、他	プラズマ・核融合学会第 29 回年会 (春日市) (24. 11. 27)	特共 24001
プラズマ医療の安全評価に向けた脂質酸化反応の 検証	井川 聡、他	電気学会プラズマ・パルスパワー合同 研究会(東京都) (24. 12. 10)	特共 24001
歯科ならび外科消毒を目指した低pH法とプラズマ 処理水を用いた殺菌技術	井川 聡、他	第30回プラズマプロセシング研究会 (浜松市)(25.1.21)	特共 24001
大気圧低温プラズマを利用した液中殺菌技術の開発	井川、聡、他	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同 発表会 (和泉市) (25.2.5)	特共 24001
殺菌・消毒のためのプラズマ処理水生成と保存	井川 聡、他	第60回応用物理学会春季学術講演会 (厚木市)(25.3.27)	特共 24001
金属触媒の担持を意図した微粒子の作製	林寛一、中島陽一	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24028
触媒担体を指向した機能性ナノ複合微粒子の調製	林 寛一、中島陽一 木本正樹	日本化学会第 93 回春季年会(草津市) (25.3.24)	基盤 24028
カーボンナノ繊維ハイブリッド分散アルミニウム基 高熱伝導性複合材料の開発		車載、産業用パワーデバイスの放熱技 術と複合金属ヒートシンク材料 (東京都)(24.7.12)	特提 23008
VGCF-CNT フィラーを用いた Al 基高熱伝導複合材料の非弾性変形と熱伝導率の関係	垣辻 篤、他	日本機械学会 M&M2012 材料力学カンファレンス (松山市) (24.9.23)	特提 23008
粉末冶金法により作製した Ni 基金属間化合物合金の諸特性	垣辻 篤、他	日本金属学会秋期講演大会(松山市) (24.9.19)	共同 23002
熱処理を施したCNTとVGCFを含有したアルミニウム 基複合材料の熱伝導特性	_	第33回日本熱物性シンポジウム (大阪市)(24.10.5)	特提 23008
VGCF・CNT を含むアルミニウム高熱伝導複合材料を 用いた IGBT クーリングシステムの伝熱解析	垣辻 篤、他	第 33 回日本熱物性シンポジウム (大阪市) (24. 10. 5)	特提 23008
放電プラズマ焼結法による耐熱用 Ni 基金属間化合物の作製	垣辻 篤	大阪府立産業技術総合研究所・大阪市立工業研究所 第1回合同発表会 (大阪市)(24.11.1)	先行 23014

発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
アルミニウム基高熱伝導複合材料に微量添加した	垣辻 篤、他	産業技術連携推進会議近畿地域部会セ	特提 23008
カーボンナノチューブへの熱処理の効果		ラミックス分科会窯業研究会第 16 回	
		公開シンポジウム(大阪市)(24.11.15)	
Characterization of Ni ₃ (Si, Ti) Intermetalic	垣辻 篤、他	2012 MRS Fall Meeting &	共同 24115
Alloys Synthesized by Powder Metallurgical		Exhibit (Boston, USA) (24.11.26)	
Method		·	
VGCF・CNT ネットワーク型 Al 基高熱伝導複合材料	垣辻 篤、他	第20回機械材料•材料加工技術講演会	特提 24002
作製のための縮流を用いた VGCF の方向制御		(M&P 2012) (大阪市) (24.12.1)	
	垣辻 篤	ニューセラミックス懇話会第205回特	発展 24001
合金)の作製		別研究会(大阪市)(24.12.14)	2 4
	垣辻 篤	産業技術連携推進会議近畿地域部会ナ	特提 24002
高熱伝導複合材料の開発	71.0	ノテクノロジー分科会第14回技術交	1400
MANUEL OF INTERNATIONAL PROPERTY OF THE PROPER		流キャラバン(和泉市) (24.12.20)	
IGBT Cooling System Using High Thermal	垣辻 篤、他	51st AIAA Aerospace Sciences Meeting	特提 24002
Conductive Aluminum Based Composite Containing		Including the New Horizons Forum and	131% 21002
VGCF-CNT Network		Aerospace Exposition(第51回米国航	
Tool of Howoli		空宇宙学会)(Grapevine,USA)	
		(25. 1. 7)	
放電プラズマ焼結法によるNi 基金属間化合物の作製:	垣辻 篤、他	大阪府立産業技術総合研究所・大阪市	共同 24115
Web / / / / White leads of the American Market and Mark		立工業研究所 第2回合同発表会	J (1 1110
		(和泉市) (25. 2. 5)	
アルミニウム基高熱伝導複合材料に微量添加した	垣辻 篤、他	大阪府立産業技術総合研究所・大阪市	特提 24002
カーボンナノチューブへの熱処理の効果	ALL WAY IN	立工業研究所 第2回合同発表会	利促24002
N NO TOTAL O NO MINOSENDANA		(和泉市) (25. 2. 5)	
高熱伝導性アルミニウム基複合材料の開発	垣辻 篤	MOBIO-Cafe 第5回産技研技術交流セミ	特提 24002
同然は毎日バインの全後日初村シカカカ		ナー(東大阪市) (25. 2. 8)	1110E 21002
粉末冶金法を用いた Ni ₃ (Si, Ti)合金複合焼結材の	垣辻 篤、他	日本金属学会春期(第152回)大会	共同 24115
作製と特性評価	-EXC MW <u>112</u>	(東京都) (25. 3. 29)) (1 B 11 10
	渡辺義人、他	ニューセラミックス懇話会第205回	共創 22001
複合材への応用研究	<u> </u>	特別研究会(大阪市) (24. 12. 14)	y va ;
	渡辺義人、他	大阪府立産業技術総合研究所・大阪市	特提 21001
	<u> </u>	立工業研究所 第2回合同発表会	173/2 = 1001
		(和泉市) (25. 2. 5)	
材料を「ナノ」より小さな原子のオーダーで観察や」	長谷川泰則	MOBIO-Cafe 第2回 産技研技術交流セ	基盤 24029
分析してみませんか? 一球面収差補正機能付走査	<u> </u>	ミナー(東大阪市) (24.9.27)	221111, 21020
透過電子顕微鏡の可能性一			
	長谷川泰則	大阪府立産業技術総合研究所・大阪市	基盤 24029
(Cs-corrected STEM)による材料評価	<u> </u>	立工業研究所 第1回合同発表会	221111, 21020
(co corrected bright (and bright hip)		(大阪市) (24.11.1)	
産技研でのSTEM活用事例	長谷川泰則	産技研セミナー(和泉市) (24.12.11)	基盤 24029
	長谷川泰則	第 205 回特別研究会(大阪市)	基盤 24029
(Cs-corrected STEM)による材料評価	<u>民有万寸条条1</u>	(24. 12. 14)	245m. 21023
	長谷川泰則	第14回技術交流キャラバン(和泉市)	基盤 24029
評価	又有7月泰镇1	(24. 12. 20)	<u> </u>
	長谷川泰則	大阪府立産業技術総合研究所・大阪市	発展 24001
材の解析評価	<u> 八百八日本吳</u>	立工業研究所 第2回合同発表会)E/JZ 2/1001
小1、ヘンは上 N I 世 I I I I I I I I I I I I I I I I I		(和泉市) (25. 2. 5)	
バイオマス炭を用いた炭/油混焼技術の検討	大山将央、井本泰造	大阪府立産業技術総合研究所・大阪市	指定 23004
/ - 1 4 > /) / (で / 11 * 7 C) / (中 (地 / / で) X / /) -	八四四八、丌个外但	立工業研究所 第2回合同発表会	1HVC 79004
		(和泉市) (25. 2. 5)	
		(/[H/JC1]1) (40. 4. 0)	

【繊維・高分子科】 (42件)

11350 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
化学分析によるトラブル原因解析	浅澤英夫	トラブル原因解析のための分析講習会	_
		技術セミナー(和泉市) (24.11.27)	
工業製品に関わるトラブル原因解析と防止策	浅澤英夫	大阪府立産業技術総合研究所	_
一繊維関連製品を中心として一		技術講習会(岸和田市)(25.2.7)	
サンプリングバッグを用いる消臭性能評価方法に	喜多幸司	産業技術連携推進会議ナノテクノロジ	_
関する検討		一•材料部会繊維分科会近畿地域繊維	
		担当者会議(京都市) (24.10.19)	
超高圧液体処理による CNT 糸の高強度化	喜多幸司、赤井智幸	第50回全国繊維技術交流プラザ	共創 23003
	西村正樹、他	(南砺市) (24. 10. 25)	
ガスクロマトグラフ質量分析計(GC/MS)によるトラ	喜多幸司	トラブル原因解析のための分析講習会	
ブル原因解析		技術セミナー(和泉市) (24.11.27)	

発 表 題 目	発 表 者 名	発表会名(年月日)	研究番号
次世代カーボン材料の研究開発	喜多幸司、赤井智幸 西村正樹、 <u>他</u>	日新電機株式会社第 32 回研究発表会 (京都市)(24. 12. 6)	共同 24007
カーボンナノチューブ(CNT)撚糸および加工品	喜多幸司、赤井智幸 西村正樹、 <u>他</u>	第 12 回国際ナノテクノロジー総合展・ 技術会議(東京都)(25.1.30)	共同 24007
蛍光 X 線分析によるトラブル原因解析	<u>菅井實夫</u>	トラブル原因解析のための分析講習会 技術セミナー(和泉市)(24.11.27)	_
ガス透過性防水シートの環境放射能汚染対策への 適用に向けて 一腐敗性廃棄物や除染土壌等への 雨水浸透防止ー	西村正樹、赤井智幸、他	第1回環境放射能除染研究発表会 (福島市)(24.5.20)	受託 23015
廃棄物処分場閉鎖時のキャッピングに用いるガス 透過性防水シート	西村正樹、赤井智幸	第 50 回全国繊維技術交流プラザ (南砺市) (24. 10. 25)	先行 21022
ガス透過性防水シートを用いたキャッピング工法	西村正樹、赤井智幸	大阪府立産業技術総合研究所・大阪市立工業研究所 第1回合同発表会(大阪市)(24.11.1)	先行 21022
ガス透過性防水シートの耐久性評価および接合部 性能評価	西村正樹、赤井智幸、他	第 27 回ジオシンセティックスシンポ ジウム(東京都) (24. 11. 28)	受託 23015
HDPE 製遮水シートにおける引張特性値の速度依存性	西村正樹、赤井智幸	プラスチック成形加工学会第20回秋 季大会(成形加工シンポジア'12) (名古屋市)(24.11.30)	特提 22017
廃棄物処分場キャッピング用ガス透過性防水シート -土中埋設時の湿潤状態におけるガス透過性-	西村正樹、赤井智幸、他	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	先行 23020
「ガス透過性防水シートの震災廃棄物カバーシート としての適用に関する研究」に向けて	西村正樹	ジオシンセティックス技術研究会 第3回総会(大阪市)(25.3.1)	_
鉄が誘発した繊維製品トラブルに対する原因解析例	<u>陰地威史</u> 、浅澤英夫	産業技術連携推進会議近畿地域部会ナ ノテクノロジー分科会繊維担当者会議 (京都市)(24.10.19)	_
大気圧プラズマグラフト重合処理を行ったフッ素 樹脂フィルム上への有機エレクトロルミネッセンス (EL)層の作製	<u>陰地威史</u> 、田原 充 櫻井芳昭、他	第 50 回全国繊維技術交流プラザ (南砺市) (24. 10. 25)	基盤 24032
大気圧プラズマによる表面改質と接着性向上技術 (フッ素樹脂、ポリマー、ガラス、金属の恒久的表面処理)	陰地威史、田原 充、 <u>他</u>	大阪府立大学・大阪市立大学 ニューテクフェア 2012 (大阪市) (24.11.21)	受託 22020
FT-IR によるトラブル原因解析	<u>陰地威史</u>	トラブル原因解析のための分析講習会 技術セミナー(和泉市)(24.11.27)	-
蛍光 X 線を用いたダイズのセシウム蓄積部位の検討		第215回生存圏シンポジウム第2回東日本大震災以後の福島県の現状及び支援の取り組みについて(京都市)(24.11.30)	共同 24114
Operating Voltage-independent White Electroluminescence from Two Phosphorescent Ir(III) Complexes Embedded in Poly(N-vinylcarbazole)	<u>櫻井芳昭</u> 、他	International Conference on Optical, Optoelectronic and Photonic Materials and Applications (ICOOPMA 12) (Nara, Japan) (24.6.6)	特提 23016
ポリビニルカルバゾール型素子中の新規強発光性 π 共役化合物の電気光学特性	<u>櫻井芳昭</u> 、他	応用物理学会秋季年会(松山市) (24.9.12)	特提 23014
同一シクロメタル化配位子を有するりん光性ビス シクロメタル化イリジウム錯体を用いた高分子白色 電界発光素子の作製	櫻井芳昭、 <u>他</u>	色材研究発表会(堺市)(24.9.21)	特提 23014
ジピリドフェナジン骨格を構造基盤とする 新規 π 共役化合物の合成と発光特性	櫻井芳昭、 <u>他</u>	色材研究発表会(堺市)(24.9.21)	特提 23014
フルオレン系 π 共役拡張型シクロメタル化配位子 を有するりん光性白金(II)錯体の合成と高分子電界 発光素子への応用	櫻井芳昭、 <u>他</u>	色材研究発表会(堺市) (24. 9. 20)	特提 23014
薄膜白色光源用電界発光型インクの開発	<u>櫻井芳昭</u> 、他	大阪府立大学・大阪市立大学 ニューテクフェア(大阪市) (24.11.21)	特提 23014
印刷技術による低環境負荷型次世代白色有機 IL 照明素子の作製	櫻井芳昭	次世代ナノテクフォーラム 2013 (豊中市) (25. 2. 19)	特提 23014
プリント技術による低環境負荷型次世代白色有機 EL 照明素子の作製	<u>櫻井芳昭</u>	府市合同セミナー(大阪市)(25.2.28)	特提 23014
有機エレクトロニクス材料が目指した有機 LL 素子	櫻井芳昭	先端技術・シーズセミナー(大阪市) (25.3.12)	特提 24015
太陽電池について 一大阪の現状と産技研における研究開発について-	<u>櫻井芳昭</u>	「バッテリー戦略研究センター特別セミナー ーバッテリーの無限の可能性に挑戦ー」(大阪市)(25.3.15)	特提 24009

	発 表 者 名	発表会名(年月日)	研究番号
ポリマー電着法によるフルカラーマイクロレンズ アレイの作製	櫻井芳昭、井上陽太郎 佐藤和郎、他	第 93 春季年会(草津市) (25. 3. 24)	発展 24002
遷移金属添加Ⅲ族窒化物薄膜の光学的特性	櫻井芳昭、他	第60回応用物理学会春季学術講演会(厚木市)(25.3.27)	共同 24112
ポリビニルカルバゾール型素子中でのジピリドフェナジン骨格を構造基盤とする新規強発光性 π 共 役化合物の電気光学特性	<u>櫻井芳昭</u> 、他	第 60 回応用物理学会春季学術講演会 (厚木市) (25. 3. 28)	特提 24015
リサイクル分野で利用可能な易剥離粘着剤の開発	<u>舘 秀樹</u> 、井上陽太郎 山元和彦	第 61 回高分子討論会(名古屋市) (24. 9. 19)	特提 24106
新規な刺激応答性易剥離粘着剤の開発	<u>舘 秀樹</u> 、井上陽太郎 山元和彦	第 21 回ポリマー材料フォーラム (北九州市) (24. 11. 1)	特提 24106
熱応答性易剥離粘着剤の開発	<u>舘</u> 秀樹、井上陽太郎 山元和彦	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	特提 24106
電気泳動堆積法による異形酸化チタン微粒子膜の 作製とその応用	日置亜也子	産業技術連携推進会議近畿地域部会 ナノテクノロジー分科会第14回技術 交流キャラバン(和泉市)(24.12.20)	先行 23015
酸化チタン配線の作製とその光触媒能評価	日置亜也子	大阪府立産業技術総合研究所・大阪市 立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24033
異形酸化チタン光触媒とその固定化膜の作製	日置亜也子	次世代ナノテクフォーラム 2013 (豊中市) (25. 2. 19)	先行 23015
熱可逆反応性を利用した解体性接着剤の開発	井上陽太郎、舘 秀樹 山元和彦	第 61 回高分子討論会(名古屋市) (24. 9. 19)	基盤 24034
可逆反応を利用した解体性接着剤の開発	井上陽太郎、舘 秀樹 山元和彦、櫻井芳昭	大阪府立産業技術総合研究所・大阪市立工業研究所 第2回合同発表会 (和泉市)(25.2.5)	基盤 24034
フラン官能基を有するコポリマーとマレイミド誘導体とのDiels-Alder 反応を利用した解体性接着剤の作製	井上陽太郎、舘 秀樹 山元和彦、櫻井芳昭	第 93 回日本化学会春季年会(草津市) (25. 3. 24)	基盤 24034

【皮革試験所】(6件)

(017)	T		T
発 表 題 目	発表者名	発表会名 (年月日)	研究番号
An Investigation about Disappearance of	稲次俊敬、吉川章江、 <u>他</u>	The 9th Asian International	特共 23003
Hexavalent Chromium in Leather		Conference on Leather Science and	
		Technology (AICLST 2012)	
		(Taipei, Taiwan) (24.11.12)	
廃棄コラーゲン繊維を利用したマイクロポーラス	道志 智	ニューセラミックス懇話会第205回	基盤 24037
シリカの合成		特別研究会(大阪市)(24.12.14)	
コラーゲン繊維を鋳型として利用した繊維状マイ	道志 智	日本化学会第93春季年会(草津市)	基盤 24037
クロポーラスシリカの合成		(25. 3. 22)	
統計学的手法による各種動物革の毛穴分布状態の	道志 智、奥村 章	大阪府立産業技術総合研究所・大阪市	基盤 24036
定量評価		立工業研究所 第2回合同発表会	
		(和泉市) (25. 2. 5)	
皮革毛皮製品の技術相談事例の紹介	奥村 章、道志 智	大阪府立産業技術総合研究所・大阪市	基盤 24036
		立工業研究所 第2回合同発表会	
		(和泉市) (25. 2. 5)	
An Approach to Save Electricity in Leather	沙崎久芳、他	The 9th Asian International	特共 23003
Manufacture		Conference on Leather Science and	
		Technology (AICLST 2012)	
		(Taipei, Taiwan) (24.11.12)	

(B) 論文発表(49件)

【経営企画室】 (1件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
遊星ボールミルを用いたポリイミト粒子とカーボ	浅尾勝哉、吉岡弥生、他	粉体工学会誌,49,7(2012)521.	特提 24105
ンナノチューブとの複合粒子の開発			

【顧客サービス室】 (3件)

	1		
<u></u>	発 表 者 名	掲 載 誌 名	研究番号
褥瘡予防寝具が高齢被験者の仙骨部接触圧と組織	木村裕和、山本貴則、他	日本生理人類学会誌,17,3(2012)	支援 22012
血流量に及ぼす影響と身体的特徴との関係		125.	
内蔵センサを活用した情報機器の消費エネルギー	石島 悌、平松初珠	情報処理学会論文誌, 54, 3 (2013)	基盤 24035
計測手法	山東悠介、岩田晋弥	1120.	
法人運営システム導入と所内システム連携	新田 仁、石島 悌	研究所報告,No. 26(2012)25.	基盤 24035
	平松初珠. 中西 隆		

【加工成形科】(6件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
回折型ビーム整形素子を用いたレーザ合金化技術	<u>萩野秀樹</u> 、山口拓人	天田財団研究概要報告書	特提 23003
の開発	武村 守	国際交流報告書(25) (2013) 195.	
Electrical Discharge Truing for Electroplated	渡邊幸司、南久、他	International Journal of Electrical	特提 24013
Diamond Tool -The Effect of EDM Condition and		Machining, No. 18 (2013) 9.	
Electrode Material-			
レーザ合金化による低炭素鋼の局所的な表面硬化法	<u>山口拓人</u> 、萩野秀樹	研究所報告, No. 26 (2012) 55.	特提 23003
	武村 守		
ニューラルネットワークを利用したサーボプレス	白川信彦、四宮徳章	天田財団研究概要報告書	特提 23002
のモーション設定の高度化		国際交流報告書(25) (2013) 123.	
高出力レーザによる生体材料(純チタン)のレーザ	中本貴之、白川信彦	日本レーザー医学会誌, 33, 2 (2012)	特提 24004
積層造形	四宮徳章、他	166.	
Synthesis of Porous Titanium with Directional	中本貴之、白川信彦、他	International Journal of Automation	特提 24004
Pores by Selective Laser Melting		Technology, 6 , 5 (2012) 597.	

【金属材料科】(5件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
レーザ加熱による表面溶体化処理を応用した β 型	道山泰宏、出水 敬	日本金属学会誌,76,7(2012)456.	特提 24202
チタン合金の表面時効硬化処理とその摩耗特性			
摩擦撹拌接合による鋼と高強度アルミニウム合金	田中 努	天田財団研究概要報告書	特提 23001
の異種金属接合材のプレス成形性		国際交流報告書(25) (2013) 117.	
Application of Ni Base Dual Two-phase	平田智丈、他	Proceedings of 9th International	_
Intermetallic Alloy Tools for Joining SUS430		Friction Stir Welding Symposium,	
Plates		CD-ROM	
共通試料 7075-T6 アルミニウム合金の FSW	平田智丈、田中 努、他	軽金属学会研究部会報告書摩擦攪拌	_
		プロセスによる接合と表面改質、	
		No. 58 (2012) 1.	
摩擦攪拌接合法によるアルミニウムと鋼の異種金	平田智丈、田中 努	軽金属学会研究部会報告書摩擦攪拌	特提 23001
属接合	白川信彦、四宮徳章、他	プロセスによる接合と表面改質、	
		No. 58 (2012) 34.	

【金属表面処理科】 (6件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
めっきプロセスの高度化 -環境、省資源、表面機	森河 務、中出卓男	めっき技術, 25 ,3(2012)83.	_
能ニーズに対応するめっき技術支援-	長瀧敬行、西村 崇		
	左藤眞市、三浦健一		
Ni めっき SKD11 基材上に生成した Cu 微粒子による	三浦健一、森河 務	表面技術, 63 ,6(2012)381.	特提 22012
微細孔 PVD 硬質膜の密着性と摩擦特性	出水 敬、白川信彦		
	横井昌幸		
Formation of S-PhaseLayer on Plasma Sprayed AISI	足立振一郎、上田順弘	Thin Solid Films, 523 (2012) 11.	特提 22006
316L Stainless Steel Coating By plasma Nitriding			
at Low Temperature			
金属分析における考え方・分析法と分析事例-品質	岡本 明	研究所報告,No. 26(2012)33.	_
管理、クレーム処理、製品開発等へ向けて-			
Hardness Profile Improvement of Plasma Nitrided	榮川元雄、上田順弘、 <u>他</u>	International Heat Treatment &	共同 23008
High speed Steel by Glow Discharge Heating		Surface Engineering, 5, 4 (2012) 171.	
小物部品のバレル式プラズマ浸炭・窒化処理システム	<u>榮川元雄</u> 、上田順弘	アクティブスクリーンプラズマ炭窒化	特提 22001
の開発		技術講演会,講演(5)	

【制御・電子材料科】 (5件)

発 表 者 名	掲 載 誌 名	研究番号
田中恒久、金岡祐介	研究所報告,No. 26(2012)13.	共同 24105
宇野真由美、村上修一、他		
村上修一、他	Journal of Non-Crystalline Solids,	共同 23007
	358 (2012) 2530.	
村上修一、宇野真由美	Physica Status Solidi C, 9 , 12,	先行 23012
佐藤和郎、櫻井芳昭	(2012) 2641.	
宇野真由美、他	Mater. Res. Soc. Symp. Proc., 1402,	特提 23015
	U05. 02 (2012).	
宇野真由美、他	Advanced Materials, 24 (2012) 5212.	特提 23029
	田中恒久、金岡祐介 宇野真由美、村上修一、他 村上修一、他 村上修一、宇野真由美 佐藤和郎、櫻井芳昭	田中恒久、金岡祐介 宇野真由美、村上修一、他 研究所報告, No. 26 (2012) 13. 村上修一、他 Journal of Non-Crystalline Solids, 358 (2012) 2530. 村上修一、宇野真由美 佐藤和郎、櫻井芳昭 Physica Status Solidi C, 9, 12, (2012) 2641. 宇野真由美、他 Mater. Res. Soc. Symp. Proc., 1402, U05. 02 (2012). 宇野真由美、他 Advanced Materials, 24 (2012) 5212.

【製品信頼性科】(5件)

発 表 題 目	発表者名	掲 載 誌 名	研究番号
Fast Calculation of Computer-Generated	<u>山東悠介</u> 、他	Optics Express, 20 , 19 (2012) 20962.	共同 23019
Holograms Based on 3-D Fourier Spectrum for			
Omnidirectional Diffraction from a 3-D			
Voxel-Based Object			
段ボール箱の圧縮強度に及ぼす荷重の影響	高田利夫、津田和城	日本包装学会誌, 21 , 5(2012)379.	基盤 24021
蓄積疲労スペクトルを用いた振動試験条件の作成	津田和城、中嶋隆勝、他	研究所報告,No. 26(2012)7.	特提 21008
と輸送環境の分析			
非ガウス型ランダム振動試験の有効性に関する	細山 亮、中嶋隆勝、他	日本包装学会誌,21,2(2012)107.	支援 23008
実験的検証			
非ガウス型ランダム振動が包装内容品の応答に	細山 亮、中嶋隆勝、他	日本包装学会誌,21,6(2012)471.	基盤 24024
与える影響 -数値計算による検討-			

【化学環境科】(5件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
Fabrication and Characterization of	吉岡弥生	e-Journal of Surface Science and	特提23022
Fluorine-Containing Aromatic Polyamide		Nanotechnology, 10 (2012) 74.	
Nanofiber Mats			
Free Radicals Induced in Aqueous Solution by	井川、聡、他	Applied Physics Letter, 100, 254103	特共23001
Non-Contact 2 Atmospheric-Pressure Cold Plasma		(2012)	
プラズマプロセスの新展開 医療応用の可能性	井川、聡、他	クリーンテクノロジー , 23, 2 (2013) 53.	特共24001
湿式酸化分解のための水溶性鉄系触媒の開発	林寛一、中島陽一	研究所報告,No. 26(2012)61.	先行23019
Correlations between Thermal Conductivity and	垣辻 篤、他	Journal of Solid Mechanics and	特提23008
Inelastic Deformation of Aluminum Based	_	Materials Engineering, 6, 7 (2012)	
Composites Containing VGCF-CNT Network		801.	

【繊維・高分子科】 (7件)

発表題目	発 表 者 名	掲 載 誌 名	研究番号
鉄が誘発したトラブルに対する原因解析	浅澤英夫	研究所報告,No. 26(2012)19.	_
-繊維製品を中心に-			
ジオシンセティックスの高速引張り特性に関する	西村正樹、赤井智幸	研究所報告,No. 26(2012)49.	特提 22017
研究			
ガス透過性防水シートの耐久性評価および接合部	西村正樹、他	ジオシンセティックス論文集, 27	受託 23015
性能評価		(2012) 47.	
Photoluminescence Color Tuning of	櫻井芳昭、 <u>他</u>	Dyes and Pigments, 95 (2012) 695.	特提 23014
Phosphorescent Bis-Cyclometalated Iridium(III)			
Complexes by Ancillary Ligand Replacement			
Operating Voltage-Independent White	<u>櫻井芳昭</u> 、他	Physica Status Solidi C, 9 , 12,	特提 23014
Electroluminescence from Two Phosphorescent		(2012) 2557.	
Ir(III) Complexes Embedded in			
Poly(N-vinylcarbazole)			
Photo- and Electroluminescence from	櫻井芳昭、他	The Journal of Physical Chemistry C,	特提 23014
2-(dibenzo[b, d]furan-4-yl)pyridine-based		117 (2013) 532.	
Heteroleptic Cyclometalated Platinum(II)			
Complexes: Excimer Formation Drastically			
Facilitated by an Aromatic Diketonate Ancillary			
Ligand			
粘着剤の基礎 -種類と評価方法-	<u>山元和彦</u>	加工技術, 48 ,3(2013)158.	_

【皮革試験所】(6件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
市場流通革の現状調査	稲次俊敬、汐崎久芳 奥村 章、道志 智 吉川章江	環境対応革開発実用化事業報告書 (2013) 1.	特共 24002
6価クロムの抑制方法に関する研究	<u>稲次俊敬</u> 、他	環境対応革開発実用化事業報告書 (2013) 20.	特共 24002
皮革製造工程における二酸化炭素排出量の削減に 関する検討小規模製革工場における消費電力量の 計測と解析	<u>稲次俊敬</u> 、汐崎久芳	環境対応革開発実用化事業報告書 (2013) 44.	特共 24002
Effect of the Removal Method of Hide Powder on the Porous Properties of Nanoporous Silica	道志智	Journal of the Society of Leather Technologists and Chemists, 96 , 2 (2012) 68.	先行 21023
羊革と山羊革における乳頭層中のエラスチン線維 の走行状態の違い	道志 智	皮革科学,58, 1(2012)40.	支援 23012
Development of Quantitative Estimation of Hair Follicle Patterns for Leather Surface by Point Pattern Analysis		Journal of the Society of Leather Technologists and Chemists, 97 , 1 (2013) 1.	基盤 24036

(7) 外部からの研究員等の受け入れ

当所が行う研究事業を実施するにあたり、関係企業や大学等から派遣研究員を受け入れ、研究の円滑な推進を図った。

		企業数(延数)	人数	人・月
共同研究	大学	5大学(11)	3 3人	214人・月
光时仰九	企業	10社	20人	177人・月
受託研究		24社(26)	3 9人	9 9人・月

(8) 受賞

優れた研究や実績に対して、7件の賞を受けた。

受賞名	授与者	受賞日	受賞者	受賞対象テーマ
日本包装学会論文賞	日本包装学会	24. 7. 5	製品信頼性科:	尖度を考慮した非ガウス型ランダム
			細山 亮、中嶋隆勝	振動生成法
社団法人西日本プラスチック	社団法人西日本プラスチック	24. 11. 14	加工成形科:吉川忠作	当該協会の人材養成講座の講師
製品工業協会	製品工業協会			
感謝状				
第50回全国繊維技術交流	経済産業省産業技術環境局長	24. 10. 25	地方独立行政法人大阪府立	廃棄物処分場閉鎖時のキャッピング
プラザ			産業技術総合研究所	に用いるガス透過性防水シート
経済産業省			(繊維・高分子科:	
産業技術環境局長賞			西村正樹、赤井智幸)	
公益社団法人日本包装技術	公益社団法人日本包装技術	24. 11. 29	地方独立行政法人大阪府立	全日本包装技術研究大会における
協会感謝状	協会		産業技術総合研究所	研究発表
産業技術連携推進会議	産業技術連携推進会議知的	24. 12. 6	金属表面処理科:塚原秀和	第 55 回分析技術共同研究
知的基盤部会分析分科会	基盤部会			無機分析
認定証	知的基盤部会分析分科会			
産業技術連携推進会議	産業技術連携推進会議知的	24. 12. 6	金属表面処理科:山内尚彦	第 55 回分析技術共同研究
知的基盤部会分析分科会	基盤部会			無機分析
認定証	知的基盤部会分析分科会			
優秀ポスター賞	(社)高温学会レーザ加工学会	24. 12. 13	加工成形科:山口拓人	レーザアロイングによる鋼表面への
				バナジウム炭化物含有高耐摩耗性
				合金層の形成

4. 技術支援業務

当所では、研究職員、設備機器などをフルに活用して、日常的に企業から持ち込まれる課題解決のために、受託研究、依頼試験、施設設備の開放による技術支援を以下のとおり実施した。また、産技研インキュベータによる開発支援も行った。

(1)受託研究

人材や試験研究設備が不足する、あるいは新たな研究開発を行う上で研究資金が不足する中堅・中小企業に対して、当研究所の保有する設備、研究員の持つ技術やノウハウを利用して、企業単独では実施が困難な技術課題の解決や研究開発を行った。

また平成24年度より、通常の依頼試験では対応できない場合などに対応するため、受託研究より簡素な手続きで速やかに実施することができる簡易受託研究制度を新たに設け、企業の技術課題解決を支援した。

【民間からの受託研究】(26件)

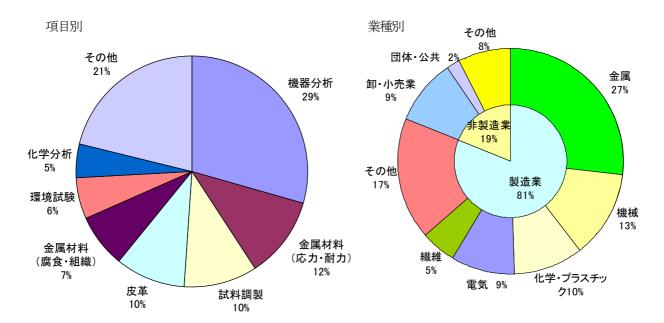
【以间7/4000文记明元】(20円)	Т	
題 目	期間	担 当 者
ガス透過性防水シートの力学特性の速度依存性評価		繊維・高分子科:西村正樹、赤井智幸
カーペットによる発じん抑制効果に関する研究	24. 6. $4 \sim 24.11.30$	製品信頼性科:山本貴則、山東悠介
		顧客サービス課:木村裕和
エアコンクリーニングによる節電効果の実験的検討	24. 6.18 \sim 24. 9.10	製品信頼性科:山本貴則、山東悠介、岩田晋弥
動物飲水量測定装置の開発に関する研究	24. 7. 2 \sim 24. 9.28	制御・電子材料科:北川貴弘、金岡祐介
炭化水素ガス改質器の開発	24. 7. 2 \sim 24. 10. 31	化学環境科:小河 宏、中島陽一、吉岡弥生、林 寛一
【題目非公開】	24. 7. 2 ~ 24.11.30	制御・電子材料科:佐藤和郎、村上修一、金岡祐介
		製品信頼性科:山東悠介
ワニ革の高堅ろう性染色技術開発研究(1) 黒色染色	24. 8. 1 \sim 24. 10. 31	皮革試験所:稲次俊敬
制震・免震・耐震を組み合わせた情報機器用ラックの地震	24. 8. 3 \sim 25. 1.31	製品信頼性科:中嶋隆勝、津田和城、高田利夫
対策ユニットの開発		細山 亮
		加工成形科:四宮徳章
レーザクラッディングにおけるピンホールならびに母材	24. 9. 10 ~ 24. 12. 7	加工成形科: 萩野秀樹、山口拓人、中本貴之
境界部における融合(溶着)不良の低減に関する研究		四宮徳章
3次元有機トランジスタの応用開発	24. 9. 18 \sim 25. 3. 15	制御・電子材料科: 宇野真由美
鮮明な図柄が表現可能な紙用静電植毛装置の開発	24. 9.18 \sim 25. 3.28	繊維・高分子科:舘 秀樹
		制御・電子材料:北川貴弘
		製品信頼性科:平井 学
熱硬化性樹脂の高速引張特性評価	$24.10.22 \sim 24.12.7$	繊維・高分子科:西村正樹、赤井智幸
アルミケース成形金型への DLC 膜適用の検討	$24.10.23 \sim 25.3.31$	金属表面処理科:三浦健一、小畠淳平
		加工成形科:白川信彦、四宮徳章
日本鉄鋼標準物質認証値決定分析	24. 11. 1 \sim 24. 11. 30	金属表面処理科:塚原秀和
CO2排出量評価システムの運用・保守、および管理環境の	24. 11. 9 \sim 25. 3. 15	業務推進課:中西隆、石島悌、新田仁
開発		平松初珠
畜産施設用脱臭帆布の脱臭性能評価	24. 11. 12 ~ 25. 2. 28	繊維・高分子科:喜多幸司、山下玲子
液晶制御装置の開発に関する研究	$24.11.20 \sim 25.1.31$	制御・電子材料科:金岡祐介、宇野真由美
住宅用引き戸の騒音・振動測定	24. 12. 3 \sim 25. 1. 18	製品信頼性科:片桐真子、中嶋隆勝
【題目非公開】	24. 12. 3 ~ 25. 3. 28	製品信頼性科:山東悠介
		制御・電子材料科:佐藤和郎、村上修一、金岡祐介
鼠忌避材の開発	24. 12. 10 ~ 25. 2. 28	化学環境科:小河 宏、林 寛一、喜多幸司
レンジフードにおけるフィルター装着時の負荷影響検証	$24.12.10 \sim 25.3.11$	製品信頼性科:山本貴則
ISO 4180 (包装貨物性能評価試験方法) の改訂に向けた		製品信頼性科:中嶋隆勝、高田利夫、津田和城
調査研究		細山 亮
ワニ革の高堅ろう性染色技術開発研究(2)黒色浸透染色、	25. 1. $4 \sim 25$. 3. 15	皮革試験所:稲次俊敬
並びに各種レタン剤がリン酸化染料染色革に及ぼす影響		
炭化水素ガス改質器の開発(2)	25. 2. 1 \sim 25. 3.29	化学環境科:小河 宏、中島陽一、吉岡弥生
		林 寛一、大山将央
ごみ焼却炉ボイラー配管の長寿命化を目的とした自溶性	25. 2. 1 \sim 25. 3.29	金属表面処理科:足立振一郎
合金溶射の確立		
リチウムイオン電池電極の性能向上	25. 2. 1 \sim 25. 5.31	繊維・高分子科: 櫻井芳昭

【簡易受託研究】(90件)

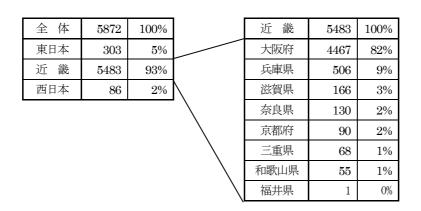
担当科	実施件数	担当科	実施件数	担当科	実施件数
経営企画室・顧客サービス室	0.5	金属表面処理科	12	化学環境科	21
加工成形科	7.8	制御・電子材料科	10.3	繊維高分子科	9.3
金属材料科	21.5	製品信頼性科	5. 5	皮革試験所	2
				合計実施件数	90

(2) 依頼試験

企業からの依頼により、材料、部品などの各種試験、分析、測定等を行うほか、特殊加工にも応じた。依頼試験の利用目的は、製品の品質・機能の管理と向上、材料や製品の成分分析、不良品の原因究明、研究開発などに分けられる。平成24年度の実績は次のとおりである。


依頼試験部別件数

	分析	試験及び	加工及び	複写・複本	オーダー	合語	<u></u>
	23.01	測定	解析	及子	メード	件数	点数
顧客サービス室		4	1	44	1	50	163. 5
加工成形科		200. 5	68	4		272. 5	1038
金属材料科	15. 5	1013	287. 5	4		1320	3168
金属表面処理科	1062. 5	367	164. 5	4	2	1600	4985
制御・電子材料科	5	55	242	2		304	748
製品信頼性科		226. 5	1	5	2	234. 5	1139. 5
化 学 環 境 科	369	206	111	3	4	693	4430. 5
繊維・高分子科	528	190	39	2	34	793	2179.5
皮革試験所	18	568	14	5		605	1573
総計	1998	2830	928	73	43	5872	19425


項目別・業種別依賴試験件数

					製道	= 業					非	製	造業	Ě		
		機	金	電	化学	木材	繊	皮	その	鉱	建	卸	情報	F E	その	総
		械	属	気	・プラスチック	・パルプ	維	革	他製造業	業	設	・小売業	・サービス	体・公共	他非製造業	計
	化 学 分 析	18	38	14	36	91	5		48		1	15		5	5	276
分析	機器分析	263	595	164	201	22	73	4	175	8	26	131	14	20	26	1722
	寸法・形状・部品測定	34	41	13	29		4		29			9	2	7	9	177
	熱 及 び 燃 焼	1			1	2						1	2		1	8
	包 装 試 験		4	2	3	13			6							28
4:	金属材料(応力・耐力)	160	259	63	2	9		4	37		31	64	8	3	13	681
試験および測定	金属材料(腐食・組織)	76	211	28	21	7			34		3	33	3	1	20	440
おト	高 分 子 材 料	5	13	12	24		24	1	5			1		1	3	89
Ũ	電 気 試 験	1	10	47	45	2	4		21		4	9		2	21	166
測定	化 学 試 験	12	2	1	14	4	3		15		3	11			1	66
~_	めっき	6	34	2	3				3		3	13	1		3	68
	環境試験	27	102	40	51	1	8		59	3	1	34	16		8	350
	繊維	8	3	6	26	3			32			19		5	20	188
	皮革		2	2	20	7	35	186	43			143	9	6	116	569
加	機械加工	14	17	7	1		1		2			1	4	2	7	56
おお	真空表面加工	10	22	66	22		2		56		10			43	3	234
よ	セラミック加工	1	12	2	5									2	1	23
加工および解析	試 料 調 製	94	196	51	68	7	7	4	74		4	64	4	5	16	594
	データの解析	2		3	8	2			1		1	1		1	1	21
複	写 ・ 複 本	6	19	4	6	2		2	12			5	1	1	10	73
<u></u> オ	ーダーメード		5	13			22		2					1		43
	総計	738	1585	540	586	172	291	201	654	11	87	554	64	105	284	5872

依頼試験の各種分類

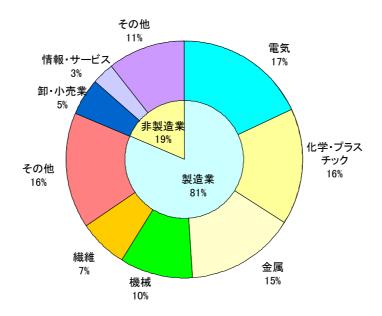
地域別

大阪府内地域別件数

地域	北大阪	394	9%	大阪市	1664	37%	東大阪	974	22%	泉州	1197	27%	南河内	238	5%
	吹田市	109	28%	中央区	265	16%	東大阪市	415	43%	堺市	598	50%	松原市	119	50%
₩	摂津市	71	18%	西区	200	12%	八尾市	204	21%	和泉市	163	14%	富田林市	41	17%
域	高槻市	68	17%	浪速区	169	10%	大東市	86	9%	岸和田市	140	12%	河内長野市	33	14%
地域内市別	豊中市	60	15%	淀川区	163	10%	守口市	74	8%	貝塚市	74	6%	羽曳野市	22	9%
別	茨木市	55	14%	生野区	129	8%	寝屋川市	52	5%	忠岡町	71	6%	大阪狭山市	15	6%
	その他	31	8%	その他	738	44%	その他	143	15%	その他	151	13%	その他	8	3%

注) 地域の%は、大阪府の件数(4467件)に対する割合

(3)施設・設備の開放


試験設備や機器等の整備が不十分な中小企業のために、当所業務の支障のない範囲内で設備・機器を開放するとともに、 試験・研修施設についても機器と同様、可能な限り企業に開放している。平成24年度の実績は次のとおりである。

月別利用件数

		件 数											
	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	総計
機器・装置等	679	649	708	694	687	635	702	706	620	588	585	644	7897
TRIホール	1												1
研 修 室	8	1	2	1	7		1	1	1			2	24
大型実験室	21	19	17	18	19	17	18	17	18	18	16	18	216
総 計	709	669	727	713	713	652	721	724	639	606	601	664	8138

機器・装置等 (7897件) の各種分類

業種別

地域別

全体	7897	100%	近畿	7503	100%
東日本	285	4%	大阪府	6085	81%
近畿	7503	95% .	兵庫県	616	8%
西日本	109	1%	奈良県	262	4%
			京都府	254	3%
			三重県	120	2%
			滋賀県	110	1%
			和歌山県	56	1%

大阪府内地域別件数

地域	北大阪	631	10%	大阪市	2495	41%	東大阪	1243	21%	泉州	1461	24%	南河内	255	4%
	豊中市	179	28%	中央区	363	15%	東大阪市	462	37%	堺市	567	39%	大阪狭山市	91	36%
拙	吹田市	124	20%	淀川区	335	13%	八尾市	326	26%	和泉市	233	16%	富田林市	60	24%
地域内市	摂津市	120	19%	大正区	241	10%	枚方市	112	9%	忠岡町	138	9%	羽曳野市	51	20%
市	高槻市	92	15%	天王寺区	209	8%	大東市	107	9%	泉佐野市	115	8%	河内長野市	28	11%
別	茨木市	64	10%	西区	197	8%	柏原市	64	5%	高石市	108	7%	松原市	19	7%
	その他	52	8%	その他	1150	46%	その他	172	14%	その他	300	21%	その他	6	2%

注) 地域の%は、大阪府の件数 (6085件) に対する割合

機械・装置等の内訳

 分類 1	分類2	機械・表直寺の介部、機	器名及	 び件数	
分析機器	金属材料分野	蛍光X線分析装置	37	熱分析システム	17
(1174)	(69)	X線回折装置	8	反射菊池線回折装置	4
		電気化学測定装置	3	2	
	薄膜材料分野(5)	超薄膜評価システム	5		
	化学材料分野	広帯域粒子径分布測定装置	82	熱伝導率測定装置	82
	(350)	紫外可視分光光度計	61	多波長顕微ラマン分光光度計	22
	(000)	液体クロマトグラフ	21	フーリエ変換赤外分光光度計	19
		総合熱分析システム	16	液相粘弹性測定装置	12
		粒度分布測定装置	10	キャピラリーレオメータ	9
		真密度測定装置	6	核磁気共鳴装置	5
		分光蛍光光度計	5	/ / / / / / / / / / / / / / / / / / /	
	環境・エネルギー			<u> </u>	17
	分野(115)		59	全有機炭素分析装置 ガスクロマトグラフ	17
	万野(115)	pH メータ	17		10
		自動滴定装置	8	レーザイオン化飛行時間型質量分析装置	2
	(レーザ粒子分析計	1	フリーラジカルモニタ	1
	繊維化学分野	FT-IR	245	エネルギー分散型蛍光 X 線装置	221
	(635)	紫外・近赤外分光光度計	130	熱分析装置	39
形状測定・	精密測定(257)	三次元形状測定装置	97	触針式膜厚測定装置	47
観察機器		白色干涉型三次元表面形状解析装置	28	摩耗形態測定機	27
(955)		細孔径分布測定装置(バブルポイント法)	22	立体形状精度測定器	19
		細孔分布測定装置(ガス吸着)	10	超精密自由曲面形状測定システム	6
		光干涉式膜厚測定装置	1		
	顕微鏡類(718)	走査電子顕微鏡(分析機能付き)	176	顕微鏡	164
		デジタルマイクロスコープ	97	顕微鏡テレビ撮影装置	52
		FE-SEM(元素分析付)	63	倒立型金属顕微鏡撮影システム	34
		走査電子顕微鏡(低真空型)	30	電子顕微鏡	29
		球面収差補正機能付き走査透過電子顕微鏡	25	位相差顕微鏡写真撮影システム	12
		工場顕微鏡装置	10	共焦点顕微鏡	9
		写真撮影用実体顕微鏡システム	4	高分解能走查電子顕微鏡	4
		簡易走查電子顕微鏡	4	偏光顕微鏡	2
		蛍光顕微鏡	1	光学顕微鏡(倒立)	1
		双眼実体顕微鏡	1	/10 丁級()从级 (12) 工/	
材料強度試	金属材料•	材料試験機		摩擦摩耗試験機	1./1
粉機器	並属的科・ 機器材料(734)	ねじ締付試験機	335	大越式迅速摩耗試験機	141
	(及話的14(134)		63		32
(1384)		往復動摩擦摩耗(表面性)試験機		スクラッチ試験装置	23
		高分子クリープ試験機	22	精密ねじり試験機	19
		潤滑油摩擦試験機	18	タッピンねじ等ねじ込み試験機	18
		自動型万能深絞り試験機	10	セラミックス3点曲げ試験機	9
		シャルピー衝撃試験機	9	熱間加工再現試験装置	5
		低負荷疲労試験機	1		
	硬さ測定(140)	微小硬度計	57	超微小押し込み硬さ試験機	37
		ビッカース硬度計	15	(ナノインデンテーション・テスター)	
		ロックウェルツイン硬度計	12	ブリネル硬さ試験機	11
		高温炉付マイクロビッカース硬度計	5	ダイナミック超微小硬度計	3
	包装材料・貨物	箱圧縮試験機	127	簡易落下試験機	56
	(263)	自動制御型衝擊試験装置	25	天井走行ホイスト	15
		3トン材料試験機	14	緩衝材用衝擊試験機	10
		傾斜衝擊試験機	6	ミューレン破裂強さ試験機	6
		ビーチパンクチェア試験機	4	2 12 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	繊維物理分野	1トン材料試験機	82	ファズテスタ	55
	(247)	リッソン型摩耗試験機	31	高速引張り試験機	31
	(211)	タップン全球	13	南座引張り試験機	11
				が学れの映機 ジオシンセティックス摩擦特性評価装置	$\frac{11}{7}$
		高速衝撃試験機	8		
		二軸引張試験機	4	キャスタチェア試験機	3
		マーチンデール摩耗試験機	1	圧縮弾性試験機	1

	分類2		機器名及	····································	
電気計測機器	EMI・ノイズ試験	サージイミュニティ試験器	121	伝導妨害波測定システム	101
(1069)	(963)	放射妨害波測定システム(1 GHz 以下)	97	妨害電力測定システム	52
		ファーストトランジェント/バースト試験	幾 57	無線周波数放射電磁界イミュニティ試験機	79
		無線周波数伝導イミュニティ試験機	52	伝導ノイズ測定器	41
		ネットワークアナライザ	45	静電気放電イミュニティ試験機	33
		EM I 総合システム	32	シールド効果測定装置	29
		耐放射電磁界試験機	28	耐高周波ノイズ試験機	25
		雑音電力測定器	24	ラージループアンテナ妨害波測定システム	20
		耐雷サージ試験機	17	耐伝導性ノイズ試験機	15
		耐静電気放電試験機	15	摂動法誘電率測定治具	15
		RFインピーダンスアナライザ	12	耐ファーストトランジェント試験機	11
		雷インパルス耐電圧試験器	10	電圧ディップ試験機	10
		Sパラメータ法測定治具	8	耐電源電圧変動試験機	7
		EMI対策システム	3	放射妨害波測定システム	1
		スペクトラムアナライザ	3	が知められてラバケス	
	電源・回路関係	低周波インピーダンスアナライザ	14	可変周波電源	11
	(56)	超高抵抗計	11	小型交流可変周波電源	8
	(30)	絶縁試験器	5	デジタルマルチメーター	4
		ディジタルパワーメータ	1	部分放電自動測定装置	1
		実効値交流電圧計	1	印力从电台影例定表直	1
	記録装置(6)	天外恒文/加电/江前 ディジタルストレージスコープ	5	デジタルオシロスコープ (2ch)	1
		ホール効果測定装置		ガウスメータ	1
	薄膜・電子材料		15		12
	分野(43)	磁気特性測定装置	8	マイクロデバイス簡易計測機器	8
A#A//.2.NEA 21	その他(1)	輝度計BM-7	1	YEAR OF TANKA LUL	
繊維試験・計	測機器(206)	直示天びん	33	遊び毛試験機	25
		精密迅速熱物性測定装置	20	通気度試験機	19
		KES-FBシステム	18	粘度測定装置	16
		燃焼性試験機	12	表面自由エネルギー計	11
		糸むら試験機	8	吸水性測定装置(平面吸水法)	8
		ICIピリングテスタ	6	MVSS燃焼性試験機	6
		はっ水度試験機 (スプレーテスタ)	5	保温性試験機	4
		汗堅ろう度試験機	3	洗濯堅ろう度試験機	3
		摩擦堅ろう度試験機	3	通気性試験機	3
		検ねん器(手動)	1	垂直方向透水試験機	1
		標準光源	1		
その他の	音響・振動測定(98)	普通騒音計	63	吸音率測定システム	35
計測機器	温度測定(17)	熱分布解析システム	16	メトラーサーモシステム	1
(271)	色彩計測(66)	高性能測色計	42	分光測色計(ファイバータイプ)	12
		色彩色差計	12	, , , , , , , , , , , , , , , , , , ,	
	人体・感覚計測	接触圧力測定装置	9	人間工学生体計測処理システム	7
	(21)	生体反応測定システム	5	7 414-1 411-1	<u> </u>
	その他(69)	静電気測定装置	59	高速撮影解析装置	7
	C 45/E (00)	X線応力測定装置(高出力)	2	小型簡易暗室	1
環境試験機器	耐環境試験·振動	包装貨物用振動試験機	154	包装貨物用振動試験機用加速度センサー	96
(916)	試験(340)	大型貨物用振動試験機	40	蓄積疲労振動試験システム	32
(310)	p-Vij大 (0±0)	小型振動試験機	18	田代別次月1次到時へ次ンハ/ム	- 52
	理控测学(1)				
	環境測定(1)	オゾン発生・反応システム	1 174	上華は書かりを記り上書(189-18)	1.40
	恒温・恒室槽	輸送環境用恒温恒湿槽	174	大型恒温恒湿槽(ビルド)	140
	(575)	低湿度恒温恒湿器(包装材料)	64	低温恒温恒湿槽	59
		恒温恒湿器	59	恒温恒湿槽(PL-2FP)	36
		低湿型恒温恒湿槽	23	高温槽	16
		低温槽	4		
特殊環境施設		電波半無響室	133	電波全無響室	116
(重油应会。	人工気象室等)	無響室	64	静電気測定室	56
(441)		人工気象室	32	変温室(副室)	24

分類1	分類 2	機器名及び件数							
バイオ関連機	器(5)	超高速遠心分離器	3	安全キャビネット	1				
		オートクレーブ	1						
試料調整装置	(172)	試料調製装置一式	132	化学試料調整装置一式	38				
		ウルトラミクロトーム	2		,				
加工・製造	機械加工・	ものづくり用CNC工作機械	152	ものづくり用汎用工作機械	89				
機器(1013)	金属加工(418)	冷温間成形油圧プレス	67	切削動力計	34				
		ACサーボプレス	30	アーム式デジタイザ	17				
		金属粉末ラピッドプロトタイピング装置	12	赤外線サーモグラフィ装置	9				
		摩擦攪拌接合装置	4	精密ワイヤ放電加工機	3				
		スェージングマシン	1		,				
	プラスチック	フィルム・シート引取装置	35	多層膜製造装置	29				
	加工(161)	二軸押出試験機	16	テストピース金型	13				
		中型プラスチック射出成形機	13	プラスチック試料作製装置	11				
		混練試験装置	10	脱湿乾燥機	10				
		圧縮成形機(真空仕様)	10	コールドカットペレタイザ	9				
		金型温度調節機	4	インフレーション引取装置	1				
	セラミック加工	スプレードライヤ	19	放電プラズマ焼結炉	14				
	(58)	セラミック用切断加工装置	11	セラミック用研削加工装置	7				
		ビーズミル式粉砕機	5	ダイヤモンドワイヤソー	1				
		冷間等方圧成形機(CIP)	1						
	溶解・熱処理(76)	流動層金属熱処理炉	27	高周波誘導溶解炉	18				
		箱型電気炉	16	金属試料の雰囲気中溶解・加熱装置	13				
		高周波遠心鋳造機	2						
	表面加工・	真空蒸着装置	20	スパッタ装置	19				
	表面処理(59)	電子ビーム蒸着装置	10	UBMスパッタ装置	6				
		多機能真空蒸着装置	3	多層膜スパッタ装置	1				
	薄膜・	イオンビームエッチング装置	52	E B描画装置	27				
	電子デバイス作製・	NLDエッチング装置	26	高精度フォトリソグラフ	25				
	微細加工(191)	両面マスクアライナー	20	半導体デバイス製造用スパッタ装置	15				
		ウェハー切断機	12	フォトリソグラフ	10				
		有機蒸着膜作製装置	4						
	繊維技術分野	耐水度試験機	18	乾燥機	14				
	(50)	遮光性試験器	8	低温プラズマ表面処理装置	4				
		ニューマチックマングル	3	ワッシャー	2				
		大気圧プラズマ処理装置	1						
情報処理関連	装置(271)	プラスチック CAD/CAE	98	非線形動解析システム	77				
		X線CTスキャナ(三次元解析処理装置)	69	コンピュータシミュレーション装置	20				
		情報通信機器簡易測定装置	3	照明設備	2				
		3次元CAD/CAMシステム	2						

(4) 開放研究室の利用(産技研インキュベータ)

研究所の諸機能を利用して、研究開発を目指す創業者や新製品開発を目指す研究開発型中小企業を対象とした支援を行っている。

	M / H / H / H / H /	不自 (別級間別元と自治) 別別別元主 7 正未と内象と Uに入扱と行っている。
利用者	利用期間	テーマ
(株)Ingen MSL	H18. 4 ∼ H24.10	MEMS型医療診断用超音波プローブの開発
㈱岡野製作所	H18. 9 ∼ H24. 7	高性能熱伝導式温度湿度計測・制御システムの開発
㈱レック制御	H18. 9 ∼ H25. 3	リチウムイオン電池及び材料のリサイクル装置の開発
ヤスダエンジニアリング(株)	H19. 4 ∼ H25. 3	長距離トンネル築造のためのシールド工法と推進工法との併用工法の開発
㈱コスモマテリアル	H20. 4 ∼ H25. 3	都市ガス供給用新技術の開発
(有)コーテック	H22.12 ∼ H25. 3	マイクロ波加熱容器他の開発
TASC**1	H23. 7 ∼ H25. 3	CNT(カーボンナノチューブ)の実用化技術開発
㈱ソフセラ	H24. 3 ∼ H25. 3	機能性ナノ粒子の大量合成方法の開発
原田 齋(ハラダマテリアル)	H24. 3 ∼ H25. 3	高耐久性ヒーターの商品化の技術開発
Efligo 合同会社	H24. 7 ∼ H25. 3	ナノゲルの実用化研究開発
JOINT エンジニアリング(株)	H24. 8 ∼ H25. 3	電池材料回収技術の開発
有機エレクトロニクス技術	H25. 1 ∼ H25. 3	革新的高性能有機トランジスタを用いたプラスティック電子タグの開発
革新プロジェクト		(NEDO 戦略的省エネルギー技術革新プログラム)
河口化学㈱	H25. 2 ∼ H25. 3	導電性接着剤の製品化開発
(株)KS マテリアル	H25. 3 ∼ H25. 3	自動車床下用水溶性防錆剤の製品化開発

*TASC:技術研究組合単層 CNT 融合新材料研究開発機構

5. 指導普及業務

研究や技術支援等の業務で得た成果・ノウハウをもとに技術相談、実地指導を行った。また技術フォーラムおよび講習会を通じ、 技術普及を行うとともに、企業からの要請により、特定技術の習得を目的とした研修生を受け入れて人材育成を行っている。

(1)技術指導

(A) 指導相談

企業の技術開発や生産性の向上を積極的に支援するため、所内情報システムを活用し、総合窓口で企業から持ち込まれる技術課題に 最適の専門家を選任し、迅速・的確な課題の解決を図っている。

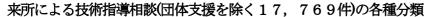
①来所による指導相談

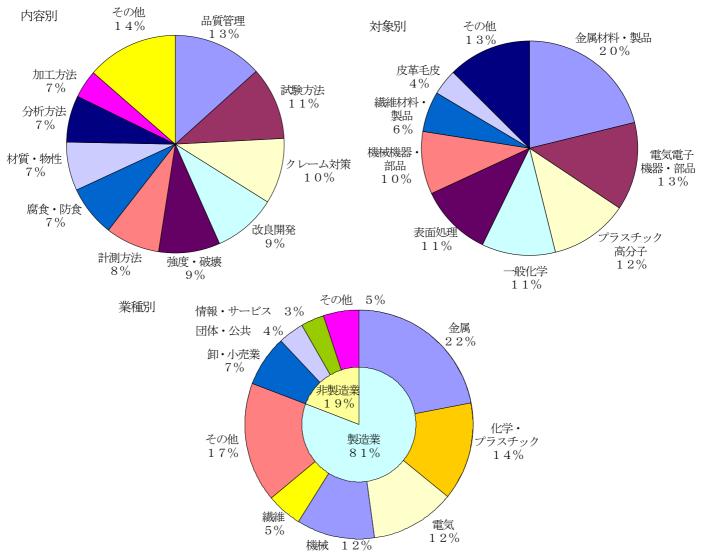
平成24年度に当研究所に来所された技術相談件数は、17,861件で、その内訳は次のとおりである。

科別指導相談件数(来所)

科 名	相談件数	科 名	相談件数
経営企画室	409	制御・電子材料科	8 1 9
顧客サービス室	409	製品信頼性科	2, 920
加工成形科	2, 475	化 学 環 境 科	2, 412
金属材料科	2, 406	繊維・高分子科	2, 970
金属表面処理科	2, 743	皮革試験所	707
		総計	17, 861

②電話・メール・FAXによる指導相談


直接面談による指導相談が最も効果的であるが、距離的・時間的制約から電話・メール・FAXによる相談も受け付けている。 総合窓口で受け付けて対応可能な職員へ繋ぐ場合と、職員への直接の電話やメールによる場合がある。 平成24年度の件数は、件で、その内訳は次のとおりである。


部別指導相談件数(電話・メール・FAX)

	電	話	メ	ール	FAX	
ניס נוק	総合窓口経由	職員直接	総合窓口経由	職員直接	総合窓口経由	
経営企画室・顧客サービス室	2, 055	1, 258	8 3	2, 520	3	
加工成形科	1, 012	2, 510	7 6	1, 451	1	
金属材料科	1, 756	3, 541	5 5	1, 224	3	
金属表面処理科	1, 424	4, 575	8 1	2, 427	1	
制御·電子材料科	252	1, 156	3 5	1, 139		
製品信頼性科	2, 149	3, 168	2 1 4	982	3	
化学環境科	979	4, 323	8 9	3, 133	1	
繊維・高分子科	1, 293	4, 811	8 0	2, 581	2	
皮革試験所	3	1, 189	5	2 5 7		
他 機 関 紹 介	265					
その他	4					
	11, 192	26, 531	7 1 8	15, 714	1 4	

来所による指導相談(17,861件)の内容別・対象別分類表

	ことの	旧特	竹田成	к (.	ι,	0	0 1	IT)	VJP	门台	י ניס	刈涿	くクリン、	プタス	X		1	-	1	1		1		
			製	加	成	試	分	計	制	自	設	品	省	輸	材	強	腐	安	改	環	ク	応	寸	総
					形						150	質	上ネ	送	質	度	蝕	٠,		境	V	用		
			造	工	加	験	析	測	御	動			•		•		•	全	良	•]	٠	体	
			方	方	工方法	方	方	方	方			管	省資源	保	物	破	防		開	公	ム対	その	支	l
			法	法	法	法	法	法	法	化	計	理	源	管	性	壊	食	性	発	害	策	他	援	計
一般		器		1		20	4	22			4	92		9		4		1	19	1		7		184
<u>加工</u>		器	2	24	19	7		2		9	6		1			1		2	1		5	51		130
精密		器		1		6		15				6				3			3		1	4		39
試験		器	2			14	7	7			6			2		2			20			15		75
電気		器	1	1		545	4	189			8	144	2	20	1	10	8	17	32	2	36	6		1026
電子		器	2			142	10	49			3	85		3	1	7	5		8		38	5		358
情報道						3		2	1		3	12				4			2			5		32
自 動		器				3	1			2	2	2					3		1		8			22
光レー			1	1	6	1	1	14		2	1	1							7		1	15		51
健康・			1	1		7	2	11			1	11		1	2	2		4	7		2	5		57
熱・エネ		機器	3		1	14		9			13	17	27	1	1	3	2		24	3	7	8		133
輸送		器				4		4			4	2		1		2	1	5	3		2	1		29
ソフ					2			1			3								3			19		28
<u>金</u> 属	製	品	22	57	143	106		95			19	230		3	196	811	249	3	75	9	277	22		2621
金	Heat	型	5	25	8	7	1	19			33	4			1	1			5		6	6		121
石油		品		8		137	4	1				4	9			1			5		1	3		173
表面	処 理	品	63	43	3	108	79	29			1	160			83	6	989	2	220	3	114	25		1928
繊維	製	品	5	3		62	30	30		1	12	151		2	41	31		1	99	38	101	23		630
衣	7-11	服				3	1	3			_	4		1	1				1	2		1		17
家具	. 建	材	1	1		26		5			2	62		5	15	18		9	19	10	22	2		197
<u>食</u>		品	2	0.0		1	4	10	1			6		1	1						57	0		83
<u>T</u>		具	2	36	4	69	4	31	1		_	6			7	8	1		4		8	3		184
雑	وريك.	貨	2	6	3	20		12			2	40		4	10	8		8	44	2	11	7		190
機械		品	4	137	33	16		210			21	36			28	93	8		16		104	6		734
電気		品	3	2	12	33		49	_		3	78			8	9	5	7	24	1	35	7		294
	光デバ		144	277	6	16	11	76	1		6	21		3	5	2	10	-	23		1	3		595
<u>金</u> 属	材	料	16	37	64	61	79	50			1	97			75	178	18	1	30		38	3		748
鋳	ملمك	物	60	6	2	14	3	25			2	61			66	52	4		33		55	7		390
無機		料	50	24	3	70		138			- 1	28 71	-		60	26		1	110	0	140	12		551
<u>有</u> 機接		料 剤	26	8	8	38		49			1		1		187	8	1	3		2	142	11		843
セラ	着		00	7	90	10		4				17			17	33	1		49		28	1		184
						15					0	15	1	ຄາ	14	12	1	17	104	1	179	2		238
	スチッ		8	20		86					9	360	1	23	233		1	17	184	1	172	27		1730
複合		料		13		20		51			5	28		1	80		1		55	2		19		313
繊維包装	材資	料	1		4	35		13			2	66		150	88 7			0	85	1		6		409
<u>也</u> 装		<u>材</u> オ		1		46						34		158	- 1	35		2	13	1	23	5 c		341
	1 · =			1	4	6						29			17	1		0	12	1	14	6		85 69F
	手 振	皮	6		4	2		11	1			155			17	2		2	277		185	32		685
		動物		1		4 2		11				111	76		1	1		1	14	1	2 1	4		148
廃水。	棄士		1	1			4	0			1	17	76		1	1	1		16	14		0	-	91
	カの	気		c		13		3 50			1	17	2	0	40	1	1	0	196	14	18			142
そは、	<u>の</u> : 支	<u>他</u> 援		6		115	91	50			3	106	1	9	42	4	6	8	126	5	148	218	92	940
	· 又		E00	717	E 4.4	1007	1001	1.40.4	_	1.4	177	9960	100	0.47	1000	1601	1909	0.4	1604	101	1707	604		
総		計	522	747	544	1907	1231	1464	5	14	1//	<i>43</i> 69	120	247	1288	1021	1303	94	1084	101	1727	bU4	92	17861

地域別

全体	17769	100%	近 畿	17043	100%
東日本	532	3%	大阪府	14173	83%
近畿	17043	96%	兵庫県	1415	8%
西日本	189	1%	奈良県	489	3%
外国	5	0%	京都府	413	3%
			滋賀県	233	1%
			三重県	187	1%
			和歌山県	130	1%
			福井県	3	0%

大阪府内地域別件数

地域	北大阪	1130	8%	大阪市	5244	37%	東大阪	3113	22%	泉州	4091	29%	南河内	595	4%
	豊中市	298	26%	中央区	779	15%	東大阪市	1275	41%	堺市	1843	45%	松原市	171	29%
+141	吹田市	250	22%	西区	520	10%	八尾市	796	26%	和泉市	763	19%	富田林市	150	25%
地域内市	高槻市	173	15%	淀川区	516	10%	大東市	247	8%	岸和田市	421	10%	河内長野市	93	16%
市	摂津市	163	15%	北区	439	8%	枚方市	164	5%	高石市	205	5%	羽曳野市	86	14%
別	茨木市	143	13%	西淀川区	341	6%	守口市	162	5%	貝塚市	195	5%	大阪狭山市	60	10%
	その他	103	9%	その他	2649	51%	その他	469	15%	その他	664	16%	その他	35	6%

注) 地域の%は、大阪府の件数(14283件)に対する割合

(B) 現地相談

企業からの要請に基づき、研究職員が生産現場等、研究所から出向いて技術指導を行うほか、研究成果の技術移転を行う必要のあるものについても積極的に普及活動を行っている。平成24年度は延べ派遣研究員456人で255回の指導を行った。その内訳は次のとおりである。

部署別現地相談件数 • 職員名

所属	延人数	職員名
経営企画室	3	野坂俊紀
業務推進課	1 6	石島 悌、新田 仁、平松初珠
顧客サービス課	1 1	藤田直也、谷口正志、鉄本秀夫
加工成形科	103	山口勝己、南久、吉川忠作、白川信彦、萩野秀樹、奥村俊彦、中本貴之、安木誠一、渡邊幸司
		山口拓人、四宮徳章、川村 誠
金属材料科	2 1	水越朋之、武村 守、森岡亮治郎、横山雄二郎、道山泰宏、平田智丈、新井美絵
金属表面処理科	101	森河 務、上田順弘、山内尚彦、三浦健一、中出卓男、足立振一郎、榮川元雄、左藤眞市
		西村 崇、岡本 明、長瀧敬行、小畠淳平、林 彰平
制御・電子材料科	5 0	岡本昭夫、大川裕蔵、朴 忠植、佐藤和郎、村上修一、北川貴弘、金岡祐介、山田義春
製品信頼性科	3 1	出水、敬、高田利夫、津田和城、山東悠介、平井、学、細山、亮、岩田晋弥
化学環境科	48	木本正樹、井本泰造、増井昭彦、垣辻 篤、中島陽一、林 寛一、井川 聡、大山将央
繊維・高分子科	5 9	赤井智幸、山元和彦、宮崎克彦、櫻井芳昭、日置亜也子、舘 秀樹、西村正樹、井上陽太郎
		陰地威史、山下怜子、森 隆志
皮革試験所	3	稲次俊敬、道志 智
合 計	4 5 6	

(C) 技術評価

府内中小企業の振興・育成のために、大阪府商工労働部等が実施する研究や設備に対する優秀技術、優秀技術者及び功労者の表彰 に関する技術評価に協力している。平成24年度の実績は以下のとおりである。(100件)

評価項目	件数	評価担当部署(件数)
文部科学大臣表彰(創意工夫功労者賞)	7件	顧客サービス課(7)
大阪府発明実施功労者	2件	金属材料科(1),制御・電子材料科(1)
大阪府発明功績者表彰	4件	業務推進課(1),加工成形科(1),製品信頼性科(1),化学環境科(1)
大阪府新技術開発功労者表彰	3件	加工成形科(1),制御・電子材料科(2)
大阪府技術改善功労者表彰	6件	金属材料科(3),加工成形科(2),制御・電子材料科(1)
大阪府ものづくり優良企業2012	77件	顧客サービス室(1),業務推進課(5),加工成形科(19) 金属材料科(7),金属表面処理科(7),製品信頼性科(6) 制御・電子材料科(18),化学環境科(9),繊維高分子科(5)
環境エコテック技術評価	1件	製品信頼性科(1)
合 計	100件	

(2)技術普及

当研究所で得られた研究成果や技術ノウハウの積極的な普及・技術移転を図るため、企業ニーズに即した実用化指導をはじめ、研究発表会、月例セミナー、技術フォーラム等、各種講習会の実施などの普及に努めた。

(A) 実用化支援

新商品開発や新規市場開拓を目指す中小企業に対して、研究所の持つノウハウや研究成果を積極的に技術移転し、これら技術シーズの実用化や商品化による中小企業の経営革新を図るため、開発から製造工程の立ち上げまで継続して技術支援を行っている。また、必要に応じて種々な契約を締結して技術支援を実施している。平成24年度の登録企業は、通常指導4社でその内訳は次のとおりである。

【通常指導】(4社)

業種	期間	担 当 者
精密機械器具製造業	24. 5. 28 ~ 25. 3. 31	金属表面処理科 中出卓男、森河 務
塗料製造業	24. 6. 1 ~ 25. 3.31	繊維高分子科 山元和彦、館 秀樹、井上陽太郎
電気機械器具製造業	24. 9.18 ~ 25. 9.30	金属表面処理科 中出卓男、西村 崇、森河 務
各種商品卸売業	24. 10. 1 ~ 24. 12. 28	製品信頼性科 山本貴則、平井 学
		顧客サービス課 木村裕和

(B) 研究発表会

これまでに所が実施した研究・指導・相談・試験業務及び大阪府が主導する産学官共同研究事業について、それらの成果を発表し、広く普及させるために研究発表会を開催した。本年度は、大阪市立工業研究所と共催で2回実施した。主な内容は、次のとおりである。

(a) 第1回合同発表会(第10回技術シーズ発表会・特許フェア)

日時: 平成24年11月1日 会場: 大阪産業創造館 3F、4F

内容:**特別講演**

「世界にチャレンジ!大阪のものづくり」

サラヤ株式会社 代表取締役社長 更家悠介

ショートプレゼンテーション (ポスターセッション) 22題 (詳細は研究発表欄を参照)

(b) 第2回合同発表会(研究発表会)

日時: 平成25年2月5日

会場:大阪府立産業技術総合研究所 TRIホール及び研修室1~5

内容: 招待講演

「強誘電体薄膜を用いた圧電MEMS 振動発電」

大阪府立大学大学院 工学研究科 准教授 吉村 武

記念講演(大阪ものづくり優良企業賞2012 夢・未来・TRI 賞受賞記念)

「色彩をコアコンピタンスとした製品展開で未来を拓く」

ターナー色彩株式会社 研究開発室長 瀧川隆弘

ショートプレゼンテーション (ポスターセッション) 50題 (詳細は研究発表欄を参照)

同時開催

- 主要機器見学会
- ・主要機器デモンストレーション
- ・大阪府立大学・大阪市立大学との共同研究成果
- ・産技研開放試験室入居企業の新技術紹介
- ・企業との共同研究成果
- ・支援交流団体等の紹介コーナー
- ・MOBIO の特設相談窓口の開催

(C) セミナー・講習会

研究所で行われている各種事業を通じて得られる技術情報や、蓄積された基礎技術、ノウハウなどをセミナーとして技術普及するとともに、各種支援機関からの要請を受けた技術者養成のための講習会を企画するなど、企画協力も含めて無料もしくは有料の講習会やセミナーを開催した。平成24年度からは団体や企業の要望に基づき企画したオーダーメイド型講習会を新たに実施した。

テーマ	会場	講師	開催日	参加者
オーダーメイド型講習会	産技研(和泉市)	水谷 潔(理事)	24. 4. 6	130名
「プラスチック成形技術講習」		吉川忠作(加工成形科)		
		奥村俊彦(加工成形科)		
オーダーメイド型講習会	産技研(和泉市)	渡邊幸司(加工成形科)	24. 4. 19	7名
「CNC 三次元画像形状測定技術に関する技術講習」		足立和俊(加工成形科)		
		本田索郎(加工成形科)		
		安木誠一(加工成形科)		
EMC セミナー	産技研(和泉市)	瀬戸信二	24. 5. 17	50名
「実践的EMC対策手法と事例~後輩に伝えたい技		(電気学会・電磁環境技術委員、		
術の勘どころ・機器設計技術者に伝えたいこと~」		IEC/SC 国内委員)		
(主催:大阪府電磁波利用技術研究会)				
「中小企業の経営戦略としてのワークライフバランス」	マイドームお	北口祐規子(オフィスKITS)	24. 5. 31	40名
(共催:大阪府産業デザインセンター)	おさか	高嶋博(三元ラセン管工業株式会社)		
		奥畑桂子(石堂硝子株式会社)		
The state of the s		今村元信(ハグルマ封筒株式会社)		
産技研協力セミナー	さんくすホール	道志 智(皮革試験所)	24. 6. 12	68名
「平成24年度 皮革の知識講習会(基礎編)」	(吹田)	奥村 章(皮革試験所)	24. 6. 15	65名
<企画協力>(主催:皮革消費科学研究所)		稲次俊敬(皮革試験所)		
		汐崎久芳(皮革試験所)		
·		吉川章江(皮革試験所)		
産技研協力セミナー	さんくすホール	稲次俊敬(皮革試験所)	24. 6. 26	84名
「平成24年度 皮革の知識講習会(応用編)」	(吹田)	奥村 章(皮革試験所)		
<企画協力>(主催:皮革消費科学研究所)	160010		04 0 00	15.5
第1回産技研技術交流セミナー in Mobio-Café	MOBIO	竹田裕紀(顧客サービス課)	24. 6. 29	17名
『「新生!産技研」と「新規導入装置」のご紹介』 (###: MONE)		岩崎和弥(顧客サービス課)		
(共催: MOBIO) 「歯科用インプラントの現状と展望」	大阪市中央公会堂	医担体转(十四步和十分)	94 6 90	34名
	人伙们中天公云至		24. 6. 29	34 名
(主催:ニューセラミックス懇話会) 産技研セミナー	マイドームお	吉成正雄(東京歯科大学)		 41 名
「マスコミ人がこっそり教えるウケル情報発信の仕方」	おさか	大谷邦郎(毎日放送)		41 泊
(共催:大阪府産業デザインセンター)	%0€N-			
第1回「総論:マスコミ人がこっそり教えるウケ			24. 7. 4	
ル情報発信の仕方」			21. 1. 1	
第2回「あなたの会社・あなたの商品・あなたの			24. 7. 18	
サービスを訴えるイベントを開催することにし			-11 11 10	
ます。」				
第3回「人前での良き話し方」]		24. 7. 25	
第4回「では、実際に、皆の前でプレゼンいた			24. 8. 1	
しましょう!発表会です!」				
『衛生技術』「抗菌」「消臭」の評価・分析方法に	大阪産業創造館	小河 宏(化学・環境科)	24. 7. 5	200名
関する技術セミナー「消臭材料の性能評価方法」				
(共催:大阪産業創造館、(地独)大阪市立工業研究所)				

テーマ	会場	講師	開催日	参加者
オーダーメイド型講習会	産技研(和泉市)	山口勝己(加工成形科)	24. 7. 6	13名
「加工技術及び形状測定技術」		足立和俊(加工成形科)		
		本田索郎(加工成形科)		
		萩野秀樹(加工成形科)		
		山口拓人(加工成形科)		
		白川信彦(加工成形科)		
		四宮徳章(加工成形科)		
		吉川忠作(加工成形科)		
		奥村俊彦(加工成形科)		
		安木誠一(加工成形科)		
		川村 誠(加工成形科)		
		南 久(加工成形科)		
		渡邊幸司(加工成形科)		
オーダーメイド型講習会	産技研(和泉市)	森河 務(金蔵表面処理科)	24. 7.11	13名
「金属表面処理技術と分析・評価技術」		小畠淳平(金蔵表面処理科)		
		三浦健一(金蔵表面処理科)		
		西村 崇(金蔵表面処理科)		
		長瀧敬行(金蔵表面処理科)		
		中出卓男(金蔵表面処理科)		
オーダーメイド型講習会	産技研(和泉市)	水越朋之(金属材料科)	24. 7.13	13名
「金属材料の材料特性評価」		松室光昭(金属材料科)		
		平田智丈(金属材料科)		
-		森岡亮治郎(金属材料科)		
大阪ベイエリア金属系新素材コンソーシアム	大阪大学	安田秀幸(大阪大学)	24. 8.31	82名
第4回セミナー「最先端凝固・鋳造プロセス」	中之島センター	多根正和(大阪大学)		
(主催:大阪ベイエリア金属系新素材コンソーシアム)		香川雅彦(侑香川ダイカスト工業)		
超耐熱性プラスチックの特徴と活用~ポリイミド微	大阪産業創造館	浅尾勝哉(経営戦略課)	24. 8.31	80名
粒子の製造から応用展開を解説!!~				
(共催:大阪産業創造館)	+1.75+-1-75-46++		04 0 0	00 7
東大阪ものづくり大学校「プラスチック系複合材料(CDD)などなるの思想性後の基準	東大阪市立産業技		24. 9. 6	33名
(FRP) およびその周辺技術の基礎」 <企画協力>(主催: 東大阪市立産業技術支援センタ	術支援センター	木本正樹(化学環境科)	24. 9. 13	34名
一、財団法人東大阪市中小企業振興勤労者福祉機構)		木本正樹(化学環境科)	24. 9. 20	30名
第1回実践EMCセミナー	産技研(和泉市)	舘 秀樹(繊維・高分子科) 五十嵐(㈱ノイズ研究所)	24. 9. 27	31名
(主催:大阪府電磁波研究会)	生1文4丌(不4分入11)	五十風((株)ノイ へが元別)	24. 9.6	50名
(土催: 八) 电磁仪机元云)		中塚(テクトロニクス社)		
オーダーメイド型講習会	産技研(和泉市)	水谷 潔(理事)	24. 9.11	13名
「大阪府立産業技術総合研究所における公的技術支	/主汉明 (作成)	久米秀樹(経営戦略課)	24. 9.11	13 /1
援について」		袖岡孝好(顧客サービス課)		
		岩崎和弥(顧客サービス課)		
	八尾商工会議所	白川信彦(加工成形科)	24. 9. 19	41 名
ナー」<企画協力>(主催:八尾商工会議所)	7 (E/F)	H 1111/2 (VILLE)	-1, 0, 10	11 11
和泉イブニングセミナー	いずみシティプ	中本貴之(加工成形科)	24. 9.21	4名
「X線CTによる三次元スキャンと金属粉末RP法に	ラザ	四宮徳章(加工成形科)	24. 9.28	4名
よるものづくり」<企画協力>(主催:大阪府技術				
協会、和泉市ものづくりサポートセンター)				
輸送包装オープンラボ 2012	産技研(和泉市)	中嶋隆勝(製品信頼性科)	24. 9.21	50名
(主催:日本包装学会輸送包装研究会)		高田利夫(製品信頼性科)		
		津田和城(製品信頼性科)		
		細山 亮(製品信頼性科)		
産業技術セミナー「表面処理技術の動向を知る」	堺市産業振興セ			
(1)レーザ表面処理技術講座	ンター	山口拓人(加工成形科)	24. 9.25	50名
(2)溶射技術講座		足立振一郎(金属表面処理科)	24. 10. 3	50名
(3) ダイヤモンドライクカーボン (DLC)		三浦健一(金属表面処理科)	24. 10. 9	50名
コーティング技術講座]			
(4)プラズマ窒化処理技術講座		榮川元雄(金属表面処理科)	24. 10. 16	50 名

東大阪ものづくり大学校「現場技術者のための放電 東大阪市立産業技術大会センター 南 久(加工成形科) 24.11.7 加工技術およびレーザ加工技術消費践議整例 中本貴之(加工成形科) 24.11.10 中本貴之(加工成形科) 24.11.20 中本貴之(加工成形科) 24.11.20 村上修一(加工成形科) 24.11.20 社 14.11 15 日本 15 日本 16	講師 開催日 参加者	講	会場	テーマ
	秦則(化学環境科) 24. 9.27 33 名	長谷川泰則(化学環	MOBIO	第2回産技研技術交流セミナー in Mobio-Café
 金彦島電子顕微鏡」の可能性・』 (共催: M0B10) 産技研ドマナー「1D 開明予計を発力」 保護・(インノヤミナー) 「接着と粘着の基礎と応用」へ企画協力>」 上龍: 大阪府技術協会、和泉市ものづくりサポートセンター) 大阪では、中で、大阪府技術協会、和泉市ものづくりサポートセンター) 州田東大阪市の産場継・高分子科) 24. 10. 23 地元和産場継・高分子科) 24. 10. 23 中田東男(金属株) 金属協力・(日催: 東大坂市立産製技術技速レンター財団技術大作大阪市中企業課課所が名階組機関 第3回監技研技権が変化とナー in Mobio-Cafe 「放産・レーザニよるマイク DU工工」(共催: M0B10) ものづくり技術をよサー「ブラスチック成形加工セスナー」へ全細協力・(日催: 東大坂市立産製技術技速センター大機能、(一財) 機械振興鬼会技術研究的 大原信・工会職が一定・大田市政・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・大田・				『材料を「ナノ」より小さい原紙のオーダーで観察
選技研セミナー 「LDD 照明宇宙を類点 (共福:(金) 宇宙が空が代開発機構(JAXA)				や分析してみませんか? ~「球面収差補正機能付走
(共催: (独) 宇宙航空研究開発機構 (JAXA))				査透過電子顕微鏡」の可能性~』(共催:MOBIO)
(共催: (独) 宇宙航空研究開発機構 (JAXA))	業連携センター 24.10.2 34名	JAXA 産業連携セン	産技研(和泉市)	
根泉イブニングセミナー		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
接着と粘着の基礎と応用」 <企画協力> 住催:大阪府技術協会、和泉市ものづくりサポートセンター) 東大阪ものづくり大学校「めっき技術ならびに腐食 東大阪市の産業技術交通とクー 地元も企業技術で支援とクー 地で表して、一大阪府技術の基礎製造が者福祉機構 第分子科 24.10.23 東大阪ものづくり大学校「めっき技術ならびに腐食 東大阪市の産業技術支援とクー 地で表し、東大阪市の産業技術支援とクー 地で表し、東大阪市の産業技術支援とクー 地で表し、東大阪市の企業技術の基礎製造者権企業を設定した。 中田卓男(金属表面処理科 24.10.10 24.00.25 24.00.25 24.00.25 24.00.25 24.00.25 24.00.26 24.00.26 24.00.26 24.00.26 24.00.26 24.00.27 24.00.26 24.00.26 24.00.27 24.			和泉シティホール	
(主催: 大阪府技術協会、和泉市ものづくりサポートセンター) 東大阪ものづくり大学校「めっき技術ならびに腐食 類大坂市のでは繊維・高分子科) 24.10.16 館 秀神 (繊維・高分子科) 24.10.26 館 秀神 (繊維・高分子科) 24.10.5 的食技術の基礎講座) 《企画協力〉(主催: 東大坂市立産業技術支援センター、財団法人東大阪市立企業技術支援とソター、 上藤東市(金属表面処理科) 24.10.19 左藤東市(金属表面処理科) 24.10.26 第 3 回産技研技術交流セミナー in Mobio-Cafe (大俊市とデー・プラスチック成形加工セミナー) (全面協力) (主催: 八尾商工会議所) 24.10.27 表理秀静(加工成形科) 24.10.27 表理方成ものづくり大学校「現場技術者のための放電 東大阪市立産業技術支援センター、 中田洋行広場 (伊東正頼(Itch 区別) 24.10.25 (共催: (一財) 機械振興協会技術研究所) 中田洋行広場 (伊東正頼(Itch 区別) 24.10.25 (共産・(一財) 機械振興協会技術研究所) 24.10.26 (中国主技術およびレーザル工技術学展議座) 中国主持行立産業技術支援センター、 加工技術およびレーザル工技術学展議座! 中本党と(加工成形科) 24.11.14 中本党と(加工成形科) 24.11.16 (中国主技が対力で業裁権が済分配とカー) を注けありませが、 中国主権が対力に対抗・ (中国主政形科) 24.11.20 (中本党が大力を対力に対抗・ (中本党と(加工成形科) 24.11.20 (中本党の工及・実施規定・ター) を注けありませが、 中国主権が対力に対抗・ (中本党と(加工成形科) 24.11.20 (中本党の工及・対力に対抗・ (中本党と(加工成形科) 24.11.20 (中本党が大力に対抗・ (中本党・(中本党・(中本党・(中本党・(中本党・(中本党・(中本党・(中本党・			149764 2 1144 21	
東大阪ものづくり大学校「めっき技術ならびに腐食 東大阪市立産業技 京教師 (議議 高分子科) 24.10.23 東大阪ものづくり大学校「めっき技術ならびに腐食 東大阪市立産業技 京教師 (議議 高分子科) 24.10.5 京教師 (議議 連) 24.10.12 24.10.13 24.10.13 24.10.14 24.10.15 24.10.15 24.10.16 24.10.16 24.10.17 24.10.26 24.10.19 24.10.26 24.10.19 24.10.26 24.10.26 24.10.26 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.28 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.27 24.10.28				
東大阪ものづくり大学校「めっき技術ならびに腐食 防住技術の基礎講座」 ・企画協力>(主催:東大阪市立産製技術支援とンター、 が支援センター、 が支援センター、 第3回産技研技術交流とミナー in Mobio-Cafe 「放産・レーザによるマイクロ加工」(共催: 100810) ものづくり技術とミナー「プラスチック成形加工セ ナー」く企画協力>(主催: 大阪府支統市党所) 東大阪ものづくり大学校「現場技術者のための放電 加工技術およびレーザ加工技術実践講座」 ・企画協力>(主催: 大阪府支統市送験財務技術とンター、 加工技術およびレーザ加工技術実践講座」 ・企画協力>(主催: 大阪府支統市送験財務技術とンター、 加工技術およびレーザ加工技術実践講座」 ・企画協力>(主催: 大阪府支統市送験財務技術とンター、 加工技術およびレーザ加工技術等政講座」 ・企画協力>(主催: 大阪府支統市送験財務技術とンター、 加工技術およびレーサ加工技術等政講座」 ・企画協力>(主催: 大阪府支統市送験財務技術とンター、 加工技術およびレーサ加工技術等政講座」 ・企画協力>(主催: 大阪府支統市送験財務技術とンター、 加工技術およびレーサ加工技術等政講座」 ・企画協力>(主催: 大阪市立産製技術技術とンター、 加工技術およびレーサルコ大術等政講座」 ・企画協力>(主催: 大阪府支統市送業財務技術とンター、 加工技術およびレーサルコ大術等政講座」 ・企画協力>(主催: 大阪府支統市送業財務技術とンター、 加工技術表はアレーサルコ大術等政講座」 ・企画協力>(主催: 大阪府支統市金乗財務支援をンター、 加工技術表はアレーサルコ大術等政講座」 ・企画協力>(主催: 大阪府支統市送業財務支援をンター、 加工技術を設定的工成が科) 24.11.20 ・大阪府支統協会、和泉市もの づくりサポートセンター) 第4回産技研技術交流とミナー in Mobio-Cafe 企業のみなさめ、LED は万能ではありません! ・LED の特性を知って良い製品をつくりましよう~ (共催: MBR10) ・ラブル原因解析のための分析に対力とせる。 産技研(和泉市) (業際実・繊維・高分子科) 音用変子(繊維・高分子科) 音が、(和泉市) (大阪府支統) 24.11.27 高力を経・高分子科) 音が、(和泉市) (大阪府支統) 24.11.27 高力・保健・高分子科) 音が、(和泉市) (大阪府・大阪府・大名) 24.11.27 高子・大阪府・大阪府・大名) 24.11.27 高力・大阪府・大阪府・大阪府・大阪府・大阪府・大阪府・大阪府・大阪府・大阪府・大阪府				
協方女権の基礎講座			古十四十十 <u>六</u> 字米十	· · · · · · · · · · · · · · · · · · ·
全企画協力>(主催:東大阪市ウ産業技術支援とンター、 財団 大東大阪市中小企業展興勤労者福祉機関				
佐藤頂市(金属表面処理科)			州又接ビングー	
(本藤原市金属表面処理科) 24.10.26	1	· · · · · · · · · · · · · · · · · · ·		
第3回産技研技術交流セミナー in Mobio-Cafe 放電・レーザによるマイクロ加工」 (共催・MOBIO) 南 久(加工成形科) 24.10.17 大型 (大型 (大型 (大型) 大型 で) 大学校 (現場技術を形形) 24.10.22 大型 (大型) 大学校 (現場技術をのための放電 加工技術来経議座) 大学校 (現場技術者のための放電 加工技術形はよびレーザ加工技術来経議座) (本画協力> (主催:東大阪市立産業技術を授センター 地口拡入り工成形科) 24.11.20 村上修一(加工成形科) 24.11.20 村上修一(加工成形科) 24.11.10 大学校 (現場技術者のための放電 加工技術形はよびレーザ加工技術来経議座) (本画協力> (主催:東大阪市立産業技術支援センター 地口拡入り加工成形科) 24.11.20 村上修一(加工成形科) 24.11.20 大工業振興センター) 吉川忠作(加工成形科) 24.11.20 大工業振興センター) 吉川忠作(加工成形科) 24.11.20 東村俊彦(加工成形科) 24.11.20 東村俊彦(加工成形科) 24.11.21 東村俊彦(加工成形科) 24.11.27 吉川忠作(加工成形科) 24.11.27 5月(表述) 11.27				則団法人果入阪中中小企業振興動力者福仙機構
「放電・レーザによるマイクロ加工」 (共催: MOBIO)				
ものづくり技術セミナー「プラスチック成形加工セミナー」(全面協力) (主催: 八尾商工会議所) 工作機械の高度化とその能力を活かす高精度加工 (共催: (一申) 機械振興協会技術研究所) 東大阪ものづくり大学校「現場技術者のための放電 加工技術およびレーザ加工技術契謀講座」 (本面協力)(主推: 東大阪市立産業技術 (本で (本で)本) (本で)			MOBIO	
大田 大田 大田 大田 大田 大田 大田 大田	射(加工成形科)	萩野秀樹(加工成用		「放電・レーザによるマイクロ加工」(共催:MOBIO)
大学校 19場 19 19 19 19 19 19 1	乍(加工成形科) 24.10.22 41名	吉川忠作(加工成形	八尾商工会議所	ものづくり技術セミナー「プラスチック成形加工セ
東大阪ものづくり大学校「現場技術者のための放電 東大阪市立産業技 南 久(加工成形科) 24.11.7 加工技術およびレーザ加工技術的実践講座 中本貴之(加工成形科) 24.11.14 中本貴之(加工成形科) 24.11.20 対上修一(加工成形科) 24.11.20 大学版明で開始力(主催:大阪府技術協会、和泉市ものづくりサポートセンター) 本のづくりサポートセンター) 本のづくりサポートセンター) 本のづくりサポートセンター) 本の対しに対形科 24.11.27 吉川忠作(加工成形科) 24.11.27 吉川忠作(加工成形科) 24.12.11 第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさん LED は万能ではありません! 中本貴之(加工成形科) 24.11.20 大学のかなさん LED は万能ではありません! 上下修子(繊維・高分子科) 本技術(和泉市) 本大大阪府立大学) 24.12.11 東出 大大阪府立大学) 24.12.11 東出 大大阪府立大学) 24.12.11 東田 大大大阪府立大学) 24.12.11 東日 大大大阪府立大学) 24.12.11 東日 大大大阪府立大学) 24.12.11 東日 大大大阪府立大学) 24.12.11 東日 大大大阪府立大学) 東日 大大大阪府立大学) 24.12.11 東日 大大阪府立大学) 東日 大大大阪府立大学) 東日 大大大阪府立大学) 東日 大大阪府立大学) 東日 大大大阪府立大学) 東田 大大大阪府立大学) 東田 大大大阪府立大学) 東日 大大大阪府立大学) 東日 大大大阪府立大学) 東日 大大大阪府立大学) 東日 大大大阪府立大学) 東日 大大阪府立大学 24.12.11 東日 大大大阪府立大学 24.12.11 東村 大大阪府立大学 24.12.11 東村 大大大阪府立大学 24.12.11 東村 大大大阪府立大学 24.12.11 東古 大大阪府立大学 24.12.11 東古 大大阪府立大学 24.12.11 東古 大大大阪府立大学 24.12.11 東古 大大阪府 主持 東古 大大阪府立大学 24.12.11 東古 大大大阪府立大学 24.12.11 24.12.12 24.12.13 24.12.14				ミナー」<企画協力>(主催:八尾商工会議所)
東大阪ものづくり大学校「現場技術者のための放電 加工技術まよびレーザ加工技術実践講座」 <企画協力>(主催:東大阪市立産報技術支援センター、 財団法人東大阪市中小企業援興助労者福祉機構) 実践セミナー 「LED 照明の国内における規制について」 (主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 <企画協力>(主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 <企画協力>(主催:大阪府電磁波利用技術研究会) 和泉・ブニングセミナー「プラスチックの製品化技術」 <企画協力>(主催:大阪府技術協会、和泉市ものづくりサポートセンター) 和泉・ブニングセミナー in Mobio-Café 「企業のみなさんしED は万能ではありません! ーしED の特性を知って良い製品をつくりましょう~(共催:M0B10) トラブル原因解析のための分析講習会 産技研(和泉市) 展出に対策が発 24.11.77 カーダーメイト型講習会 24.11.14 中本貴之(加工成形科) 24.11.20 東州俊彦(加工成形科) 東州俊彦(加工成形科) 全社・11.20 東州俊彦(加工成形科) 東州俊彦(加工成形科) 全社・12.11 東州俊彦(加工成形科) 全社・12.11 東州俊彦(加工成形科) 全社・12.11 東州俊彦(加工成形科) 東州俊彦(加工成形科) 全社・12.11 東州俊彦(加工成形科) 東州俊彦(加工成形科) 全社・12.11 東州俊彦(加工成形科) 全社・12.12 東州俊彦(加工成形科) 全社・12.13 東州俊彦(加工成形科) 全社・12.13 東州俊彦(加工成形科) 全社・12.14 東州俊彦(加工成形科) 全社・12.14 東州俊彦(加工成形科) 全社・12.15 カード・12.15 カード・1	頁(Itoh E&D) 24.10.25 100名	伊東正頼(Itoh E&	内田洋行広場	工作機械の高度化とその能力を活かす高精度加工
加工技術およびレーザ加工技術実践講座」 《企画協力〉(主催:東大阪市立産業技術支援センター、 財団法人東大阪市中小企業経験節方省福祉機構) 実践セミナー 「LED 照明の国内における規制について」 (主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 《企画協力〉(主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 《企画協力〉(主催:大阪府電磁波利用技術協会、和泉市ものづくりサポートセンター) 第4回産技研技術交流セミナー in Mobio-Cafe 「企業のみなさんLED は万能ではありません! へ上ED の特性を知って良い製品をつくりましょう~(共催: MOBIO) トラブル原因解析のための分析講習会 産技研(和泉市) 法澤英夫(繊維・高分子科) 査・担・高分子科) 音・対・人族府立大学 音が表・高分子科) 協地成史(繊維・高分子科) 協地成史(繊維・高分子科) 協地成史(繊維・高分子科) 山下怜子(繊維・高分子科) 協地成史(繊維・高分子科) は一下怜子(繊維・高分子科) 加下怜子(繊維・高分子科) 加下怜子(繊維・高分子科) 加下怜子(繊維・高分子科) 直が子科 (単本) 大人阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研(和泉市) 水谷 潔(理事) 24.12.14				(共催: (一財) 機械振興協会技術研究所)
加工技術およびレーザ加工技術実践講座」 《企画協力〉(主催:東大阪市立産業技術支援センター、 財団法人東大阪市中小企業振興勤労者福祉機構) 実践セミナー 「LED 照明の国内における規制について」 (主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 《企画協力〉(主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 《企画協力〉(主催:大阪府技術協会、和泉市ものづくりサポートセンター) 第4回産技研技術交流セミナー in Mobio-Cafe 「企業のみなさん LED は万能ではありません! ――LED の特性を知って良い製品をつくりましょう~(共催: MOBIO) トラブル原因解析のための分析講習会 産技研(和泉市) 浅澤英夫(繊維・高分子科)	加工成形科) 24.11.7 15名	南 久(加工成形系	東大阪市立産業技	
全面協力 > (主催: 東大阪市立産業技術支援センター、 財団法人東大阪市中小企業振興勤労者福祉機構				
財団法人東大阪市中小企業認興勤労者福祉機構			,,,,	
産技研 (和泉市				
「LED 照明の国内における規制について」 (主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 <企画協力> (主催:大阪府技術協会、和泉市ものづくりサポートセンター) 第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさんLED は万能ではありません! へLED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 大澤英夫(繊維・高分子科) 富多幸司(繊維・高分子科) 富多寺司(繊維・高分子科) 富・高分子科) 富・カースト・製品をつくりましまう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 本世 大(大阪府立大学) と4. 12. 11 全4. 11. 27 「大阪府立大学) と4. 12. 11 を表別 (化学環境科) 日立・イテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 本名 潔(理事) なる 潔(理事)			産技研(和息市)	
(主催:大阪府電磁波利用技術研究会) 和泉イブニングセミナー「プラスチックの製品化技術」 〈企画協力〉(主催:大阪府技術協会、和泉市ものづくりサポートセンター) 第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさんLED は万能ではありません! へLED の特性を知って良い製品をつくりましょう~(共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) クインイド型講習会 産技研 (和泉市) 本谷 深(理事) と4. 11. 20 と4. 11. 20 と4. 11. 27 を主持の (加速形料) と4. 11. 20 と4. 11. 27 を主持の (利泉市) を主持の (利泉市) を主持の (和泉市) を主持の (和泉市			/生1人11/1 (1147人111)	
和泉イブニングセミナー「プラスチックの製品化技術」 <企画協力>(主催: 大阪府技術協会、和泉市ものづくりサポートセンター) 第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさんLED は万能ではありません! ―LED の特性を知って良い製品をつくりましょう~(共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 産技研 (和泉市) 産技研 (和泉市) 養澤英夫(繊維・高分子科) 「産地域と (繊維・高分子科) 「産地域と (繊維・高分子科) 「産地域と (繊維・高分子科) 「産力・関係機能・高分子科) 「産力・関係機能・高分子科) 「産力・関係機能・高分子科) 「産力・関係機能・高分子科) 「産力・関係機能・高分子科) 「産力・関係機能・高分子科) 「産力・関係機能・高分子科」 「大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24. 11. 20 東村俊彦(加工成形科) 24. 11. 27 吉川忠作(加工成形科) (24. 11. 27 主力・関係を使う加工成形科) 「会社・12. 11 本力・イン・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・				
和泉イブニングセミナー「プラスチックの製品化技術」 <企画協力>(主催:大阪府技術協会、和泉市もの づくりサポートセンター) 第 4 回産技研技術交流セミナー in Mobio-Cafe 「企業のみなさんLED は万能ではありません! ―LED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) を表示(繊維・高分子科) 「富多幸司(繊維・高分子科) 「協地威史(繊維・高分子科) 「協地威史(繊維・高分子科) 「協地威史(繊維・高分子科) 「協力子科) 「協力子科) 「協力子科) 「協力・大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 本で (和泉市) 本で (本院・大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 を技研 (和泉市) 本で (和泉市) 本で (和泉市) 本で (本院・大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 を技研 (和泉市) 本で (和泉市) 本で (本院・大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会				
《企画協力》(主催:大阪府技術協会、和泉市ものづくりサポートセンター) 奥村俊彦(加工成形科) 24.11.27 声川忠作(加工成形科) 24.12.14 奥村俊彦(加工成形科) 24.12.14 奥村俊彦(加工成形科) 24.12.11 第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさん LED は万能ではありません! ~LED の特性を知って良い製品をつくりましよう~ (共催: MOBIO) 産技研(和泉市) 大澤英夫(繊維・高分子科) 曹井實夫(繊維・高分子科) 管井實夫(繊維・高分子科) 協地威史(繊維・高分子科) 協地威史(繊維・高分子科) 協地威史(繊維・高分子科) 24.11.27 S E Mの観察テクニックから S T E Mの活用まで 産技研(和泉市) 本技研(和泉市) 本人 大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ 24.12.11 オーダーメイド型講習会 産技研(和泉市) 水谷 潔(理事) 24.12.14			和良いティプラヂ	和良ノブーンがわられ、「プラフチッカの制旦ル技術」
古川忠作(加工成形科) 24.12.14 奥村俊彦(加工成形科) 24.12.14 奥村俊彦(加工成形科) 24.12.11 第4回産技研技術交流セミナー in Mobio-Café 産技研 (和泉市) 山東悠介(製品信頼性科) 24.11.22 「企業のみなさんLED は万能ではありません! ~ LED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 浅澤英夫(繊維・高分子科) 菅井實夫(繊維・高分子科) 菅井實夫(繊維・高分子科) [陸地威史(繊維・高分子科) [地成史(繊維・高分子科) 上下怜子(繊維・高分子科) 上下怜子(本統維・高分子科) 上下於称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称称			作がシノイノノリ	
奥村俊彦(加工成形科) 24. 12. 11 第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさんLED は万能ではありません! ~ LED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) (共催: MOBIO) (大戸ではありが開選会 産技研(和泉市) (大戸では海野ではありが開選会 産技研(和泉市) (大戸では海野では海野では海野では海野では海野では海野では海野では海野では海野では海野				
第4回産技研技術交流セミナー in Mobio-Café 「企業のみなさん LED は万能ではありません! ~LED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 浅澤英夫(繊維・高分子科)				
「企業のみなさんLED は万能ではありません! ~LED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 浅澤英夫(繊維・高分子科) 曹井實夫(繊維・高分子科) 管井實夫(繊維・高分子科) 協地威史(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 上丁怜子(繊維・高分子科) をを持て、「本の一人を表現します」 を表現します。 を表現しまする。 を表現します。 を表現します				false a manufact of special control of the standard of the sta
~LED の特性を知って良い製品をつくりましょう~ (共催: MOBIO) トラブル原因解析のための分析講習会 産技研 (和泉市) 浅澤英夫(繊維・高分子科) 曹井實夫(繊維・高分子科) 管井實夫(繊維・高分子科) 「陰地威史(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 「全技研 (和泉市) 本田 大(大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24. 12. 14	个(製品信頼性科) 24.11.22 52 名	山東悠介(製品信頼	産技研(和泉市)	
(共催: MOBIO) たラブル原因解析のための分析講習会 産技研 (和泉市) 浅澤英夫(繊維・高分子科) 曹井實夫(繊維・高分子科) 菅井實夫(繊維・高分子科) 陰地威史(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 本日本の活用まで 産技研 (和泉市) 津田 大(大阪府立大学) と4. 12. 11 オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24. 12. 14				
トラブル原因解析のための分析講習会 産技研 (和泉市) 浅澤英夫 (繊維・高分子科) 富多幸司 (繊維・高分子科) 菅井實夫 (繊維・高分子科) 陰地威史 (繊維・高分子科) 山下怜子 (繊維・高分子科) 山下怜子 (繊維・高分子科) 山下怜子 (繊維・高分子科) 多 EMの観察テクニックから S T EMの活用まで 産技研 (和泉市) 本日 大 (大阪府立大学) 長谷川泰則 (化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 水谷 潔 (理事) 24. 12. 14				
喜多幸司(繊維・高分子科) 菅井實夫(繊維・高分子科) 陰地威史(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 本田 大(大阪府立大学) 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研(和泉市) 水谷 潔(理事) 24. 12. 14		NO. No. 11 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .		
菅井實夫(繊維・高分子科) (陰地威史(繊維・高分子科) (協地威史(繊維・高分子科) (山下怜子(繊維・高分子科) (本日本) 本田 大(大阪府立大学) (大石) (大石) (本日本) 本日本)			産技研(和泉市)	トラブル原因解析のための分析講習会
陰地威史(繊維・高分子科) 山下怜子(繊維・高分子科) 山下怜子(繊維・高分子科) 多 EMの観察テクニックからSTEMの活用まで 産技研(和泉市) 津田 大(大阪府立大学) 24.12.11 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研(和泉市) 水谷 潔(理事) 24.12.14				
山下怜子(繊維・高分子科) S EMの観察テクニックから S T EMの活用まで 産技研 (和泉市) 津田 大(大阪府立大学) 24. 12. 11 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24. 12. 14	と(繊維・高分子科)	菅井實夫(繊維・高		
S EMの観察テクニックからS T EMの活用まで 産技研 (和泉市) 津田 大(大阪府立大学) 24. 12. 11 長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24. 12. 14	と(繊維・高分子科)	陰地威史(繊維・高		
長谷川泰則(化学環境科) 日立ハイテクノロジーズ オーダーメイド型講習会 産技研(和泉市) 水谷 潔(理事) 24.12.14	子(繊維・高分子科)	山下怜子(繊維・高		
日立ハイテクノロジーズ オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24. 12. 14	大(大阪府立大学) 24.12.11 179名	津田 大(大阪府立	産技研(和泉市)	SEMの観察テクニックからSTEMの活用まで
オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24.12.14	 尉(化学環境科)	長谷川泰則(化学環		
	イテクノロジーズ	日立ハイテクノロ		
	累(理事) 24.12.14 12.名	水谷 潔(理事)	産技研(和泉市)	オーダーメイド型講習会
「地方独立行政法人大阪府立産業技術総合研究所に			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	「地方独立行政法人大阪府立産業技術総合研究所に
おける公的技術支援について」 松尾 拓(経営戦略課)				
神岡孝好(顧客サービス課)				
岩崎和弥(顧客サービス課)				
オーダーメイド型講習会 産技研 (和泉市) 水谷 潔(理事) 24.12.14			在 在 は は に に に に に に に に に に に に に	ナーダーメイド刑隷羽へ
			/生]又刊(石井水川)	
				・ノノハノソフルメルグIXIVI研白」
奥村俊彦(加工成形科)				-t-mi-ti-wy x x x 20 x X x
応用福祉工学シンポジウム 富国生命ビル 大野ゆう子(大阪大学) 24. 12. 14			冨国生命ビル	応用福祉工学シンボジウム
前川義量(社会福祉法人円融会)他				
技術・情報の交流と創造展 たかつガーデン 相澤正信(日立造船株式会社) 24.12.14	言(日立造船株式会社) 24.12.14 52名	相澤正信(日立造船	たかつガーデン	
(共催:ニューセラミックス懇話会)				(共催:ニューセラミックス懇話会)

テーマ	会場	講師	開催日	参加者
技術セミナー	八尾商工会議所	水越朋之(金属材料科)	25. 1.31	18名
「耐久性と省エネルギーを向上させた環境にやさし		道山泰宏(金属材料科)		
い金属熱処理法」(主催:八尾商工会議所)				
技術セミナー「工業製品に関わるトラブル原因解析	岸和田商工会議所	浅澤英夫(繊維・高分子科)	25. 2. 7	40名
と防止策~繊維関連製品を中心に~」<企画協力>				
(主催:岸和田商工会議所)				
第5回産技研技術交流セミナー in Mobio-Café	MOBIO	垣辻 篤(化学環境科)	25. 2. 8	27名
『製品小型化でお悩みの皆様!キーは「放熱対策」				
です! ~高熱伝導性アルミニウム基複合材料の開				
発~』(共催: MOBIO)				
新規導入した電子線三次元表面形態解析装置	産技研(和泉市)	小俣有紀子(エリオニクス)	25. 2.15	19名
(SEM-EDX、EBSD 付属)		阿江 啓(アメテック(株))		
		城正 満(㈱TSL ソリューションズ)		
マスコミ人がこっそり教えるウケル情報発信・体験	マイドーム大阪	大谷邦郎(毎日放送)	25. 2.18	22名
(共催:大阪府産業デザインセンター)				
府市合同セミナー	(地独)大阪市立	丸山 純((地独)大阪市立工業研究所)	25. 2.28	120名
「次世代エネルギーデバイスの要素技術とプロセス」	工業研究所	中出卓男(金属表面処理科)		
		櫻井芳昭(繊維・高分子科)		
EMC設計・ノイズ対策への電磁界シミュレータの	新大阪丸ビル	小暮裕明(小暮技術士事務所)	25. 3. 7	55名
活用法(共催:大阪府電磁波利用技術研究会)				
新規導入した光電子分光分析装置(全自動型 XPS)	産技研(和泉市)	井上りさよ(アルバックファイ(株))	25. 3. 15	32名
		西村 崇(金属表面処理科)		
タオル製品に関する基礎技術講習会	泉佐野市立地場産	宮崎克彦(繊維・高分子科)	25. 3.22	20名
(共催:大阪タオル振興協議会、泉佐野市立地場産	業支援センター	陰地威史(繊維・高分子科)		
業支援センター)		宮崎逸代(繊維・高分子科)		
オーダーメイド型講習会	産技研(和泉市)	吉川忠作(加工成形科)	25. 3.22	20名
「プラスチック品質関連技術実習」		奥村俊彦(加工成形科)		
		木本正樹(化学環境科)		
		吉岡弥生(化学環境科)		
合計		49 件	72 日	2819名

(D) 機器利用技術講習会

企業の新技術・新製品の開発あるいは生産管理、品質管理、環境保全に役立てるために、新規導入機器を中心に機器利用技術講習会を行った。平成24年度は下記のとおり35件151回の講習会を開催し、機器の利用技術についての講習と操作法についての実習を行った。

機器利用講習会開催状況

テーマ	講師(所属系)	開催回数	延べ受講者数
新規導入した環境試験装置と評価装置(複合サイクル、高照度キ	岩崎和弥(顧客サービス課)	1回	21 名
セノン・メタルハライド・分光測色計)	増井昭彦(化学環境科)		
	吉岡弥生(化学環境科)		
	中出卓男(金属表面処理科)		
	長瀧敬行(金属表面処理科)		
顕微ラマン分光光度計	櫻井芳昭(繊維・高分子科)	27 回	27 名
	渡辺義人(化学環境科)		
元素分析付高分解能電界放出型走査電子顕微鏡(FE-SEM)	舘 秀樹(繊維・高分子科)	32 回	45名
	井上陽太郎(繊維・高分子科)		
繊維製品の評価技術講習会	宮崎克彦(繊維・高分子科)	2 回	6名
	西村正樹(繊維・高分子科)		
	宮崎逸代(繊維・高分子科)		
はじめての静電気測定 ~静電気を数量化してみよう~	平井 学(製品信頼性科)	4 回	8名
高速引張り試験機	西村正樹(繊維・高分子科)	5 回	19名
	陰地威史(繊維・高分子科)		
フーリエ変換赤外分光光度計 (FT-IR)	日置亜也子(繊維・高分子科)	8回	12 名

テーマ	講師(所属系)	開催回数	延べ受講者数
金属材料の硬さ試験	小畠淳平(金属表面処理科)	2 回	6名
鉄鋼材料の顕微鏡組織観測	横山雄二郎(金属材料科)	2 回	7名
核磁気共鳴装置(Nuclear Magnetic Resonance・・・NMR)	井上陽太郎(繊維・高分子科)	14 回	11 名
LED 照明の明るさ測定	山東悠介(製品信頼性科)	2 回	6名
	石島 悌(業務推進課)		
	大川裕蔵(制御電子材料科)		
三次元形状測定装置、真円度測定機、超精密非球面測定機	足立和俊(加工成形科)	1回	5名
	安木誠一(加工成形科)		
プレス加工シミュレーション ~板金プレス成形解析に特化し	白川信彦(加工成形科)	1回	3名
たソフトウェアによるシミュレーション~			
繊維製品の試験法講習会 染色堅ろう度試験	管井實夫夫(繊維・高分子科)	2 回	8名
	宮崎克彦(繊維・高分子科)		
	宮崎逸代(繊維・高分子科)		
製品の製造から流通過程で発生する微生物異物の解析・同定	増井昭彦(化学環境科)	1回	9名
~形態観察から微生物の菌種同定まで~	井川 聡(化学環境科)		
緩衝材用衝撃試験 ~緩衝材やプロテクターなどの衝撃吸収性能	細山 亮(製品信頼性科)	2回	6名
を把握することができます~			
非線形動解析システム	津田和城(製品信頼性科)	2回	2名
トラブル原因解析のための分析講習会	浅澤英夫(繊維・高分子科)	2 回	10名
1 / 2 / MINISTER STORY STORY	菅井實夫(繊維・高分子科)		1, 1
	喜多幸司(繊維・高分子科)		
	陰地威史(繊維・高分子科)		
	山下怜子(繊維・高分子科)		
ACサーボプレス (サーボモータ式ダイクッション)	白川信彦(加工成形科)	1回	2名
球面収差補正機能付走者添過電子顕微鏡	長谷川泰則(化学環境科)	10回	19名
水田水左冊工/双肥门, 足直边, 胆电) 野水兒	出張一博(化学環境科)	10 🖺	13/1
白色干涉型三次元表面形状解析装置、超精密非球面測定機	足立和俊(加工成形科)	1回	1名
口口一位生工人儿衣田/沙小种// 衣巨、 但相位外外田内足域	本田索郎(加工成形科)		14
蛍光X線分析装置によるめっき膜厚測定	長瀧敬行(金属表面処理科)	2回	5名
電光AMの研究員によるのうる原学例と 積分球によるLED照明の全光束測定 ~光源の明るさと色を数	山東悠介(製品信頼性科)	4回	11名
慣りがによることが、 量化してみよう~	石島 悌(業務推進課)	4 🖭	11 /1
重にしてのたよう -			
熱分析装置	大川裕蔵(制御電子材料科) 足立振一郎(金属表面処理科)	1回	4名
※の対象性 ~高温型熱膨張計、超高温型熱膨脹計、超高温型TG-DTA~	•	1 🖽	4 泊
熱間加工再現試験装置 ~1500℃で金属の材料試験ができます~	四宮徳章(加工成形科)	2 回	1名
然间加工丹光科映教画 ~1000 C (立属) / 2010 (1000 C (立) 2010	中本貴之(加工成形科)	2 🖽	1 右
鍛造シミュレーション	四宮徳章(加工成形科)	1 🖃	9名
政ロンミュレーション	白川信彦(加工成形科)	1 回	9/1
高速液体クロマトグラフ(HPLC)		4 🖃	6名
同述似体グロマトグラク (HPLC)	中島陽一(化学環境科)	4 回	0 名
中国 中	小河 宏(化学環境科) 足立和俊(加工成形科)	1 🖃	1 12
真円度測定機、超精密非球面測定機		1回	1名
近される	本田索郎(加工成形科)	0 🖃	1 17
吸水性測定装置	宮崎克彦(繊維・高分子科)	2回	4名
フーリエ変換赤外分光光度計、蛍光X線分析計	浅澤英夫(繊維・高分子科)	3 回	15名
	菅井實夫(繊維・高分子科)		
	喜多幸司(繊維・高分子科)		
마다.나카용 나시나 · 시 · 나 · 미미	陰地威史(繊維・高分子科)		~ <i>L</i> -
摩擦攪拌接合装置	平田智丈(金属材料科)	3 回	3名
	田中 努(金属材料科)	_	
新規導入した電子線三次元表面形態解析装置 (SEM-EDX, EBSD 付属)		1回	19名
新規導入した光電子分光分析装置(全自動型 XPS)	西村 崇(金属表面処理科)	1回	28名
包装貨物用振動試験機	高田利夫(製品信頼性科)	2 回	6名
製品衝撃強さ試験機	中嶋隆勝(製品信頼性科)	2 回	7名
合計	35 件	151 回	352 名

上記の他、平成24年7月5日「新生!産技研テクノフェア」ならびに平成25年2月5日「第2回合同発表会」において、合計で67回の機器利用技術講習会を開催し、640名の参加があった。

(E) 依賴試験技術講習会

テーマ	講師(所属系)	開催回数	延べ受講者数
スパーク放電発光分光分析	塚原秀和(金属表面処理科)	2回	11 名
グロー放電発光分析	上田順弘(金属表面処理科)	2回	9名
I C P 発光分光分析	岡本 明(金属表面処理科)	1回	5名
波長分散型蛍光X線分析	山内尚彦(金属表面処理科)	2回	9名
微細複合加工システム	南 久(加工成形科)	1回	5名
- 合計	5件	8回	39名

(3)人材育成

(A) 技術研修生

当所の研究職員がもつ特定の技術や特定の設備機器の操作技術などの習得を希望する企業技術者を技術研修生として受け入れている。

(a) 一般型技術者研修

当所が設定した研修科目により実施する技術者研修である。

研修テーマ	派遣会社業種	研修期間	担当科
めっき技術	金属製品	5ヶ月	金属表面処理科
繊維化学分析評価	検査装置	2ヶ月	化学環境科
繊維化学評価	検査機関	1ヶ月	繊維・高分子科
めっき技術	金属製品	6ヶ月	金属表面処理科
めっき技術	金属製品	2ヶ月	金属表面処理科

(b) オーダーメイド型技術者研修

平成24年度から始まった新規メニューであり、企業や団体からの技術者育成の要望に応えてオーダーメイドの内容で実施する技術者研修である。

研修テーマ	派遣会社業種	研修期間	担当科
クロムめっき浴の管理技術	金属製品	3ヶ月	金属表面処理科
電子回路の設計およびマイコンのプログ	プラスチック製品	6ヶ月	制御・電子材料科
ラミング			
電車運転シュミレーションシステム開発に	電気機器	1ヶ月	制御・電子材料科
おける Windows プログラミング技術の習得			

(B) 学生の技術指導

実用的な研究開発手法を身につけた技術者の養成を目的として、大学から推薦のあった学生に対する卒業研究等のための指導を行っている。

テーマ	人月	大学名	担当科
高分子電界発光デバイスの製作	1 2	大阪電気通信大学	繊維高分子科
電子ビーム加工	10	大阪電気通信大学	加工成形科
超精密切削加工	10	大阪電気通信大学	加工成形科
プラズマCVD法を用いたダイヤモンドライクカーボンの作製	1	龍谷大学	制御・電子材料科
アナログ・デジタル回路と通信プログラミング	1	龍谷大学	制御・電子材料科
合 計	3 4		

(4)情報の発信

(A)情報の提供

(a)刊行物

当所の研究あるいは試験の成果を広く一般に公開して、府下産業技術水準の向上を図るほか、業務内容、活動状況等を紹介して当所利用の手引きとするため、次の刊行物を発刊し、業界、関係機関等に配布した。

刊行物発行状況(8件)

刊 行 物 名	内 容	発行回数
平成24年度産業技術総合研究所報告	研究成果の報告	1回/年 No. 26
Technical Sheet(テクニカルシート)	継続活用できる技術・データのシート(下記参照)	随時
平成24年度 研究発表会要旨集	研究発表会予稿集	1回/年
平成23年度業務年報	平成23年度に実施した業務全般の報告	1回/年
ご利用の手引き	研究所利用案内	随時
依頼試験手数料および施設・設備使用料表	手数料・使用料一覧	随時
パンフレット	研究所紹介、「相談・開発の成功事例集」等	随時
リーフレット	研究所紹介	随時

Technical Sheet(14件)

題目	執筆者		SheetNo
メタルハライドランプ式耐候性試験装置	顧客サービス室 顧客サービス課	岩崎和弥	No. 12001
振動・衝撃による段ボール箱の強度劣化	製品信頼性科	高田利夫	No. 12002
大型積分球測定装置	制御・電子材料科	大川裕蔵	No. 12003
ステンレス鋼へのめっき皮膜の密着性を確保するニッケルストライク	金属表面処理科	長瀧敬行	No. 12004
めっき			
マイクロ放電加工	加工成形科	南久	No. 12005
サーボダイクッションを活用したAC サーボプレスによるプレス成形	加工成形科	白川信彦	No. 12006
ファイバーレーザ微細加工装置	加工成形科	萩野秀樹	No. 12007
		山口拓人	
高精度摩擦摩耗試験機	金属材料科	道山泰宏	No. 12008
電界放出形電子プローブマイクロアナライザ	金属材料科	平田智丈	No. 12009
		田中 努	
エネルギー分散型蛍光X線分析装置	繊維・高分子科	菅井實夫	No. 12010
全自動型X線光電子分光分析装置	金属表面処理科	西村 崇	No. 12011
金属分析の製品開発、トラブル品への適用事例	金属表面処理科	岡本明	No. 12012
電気製品の環境試験における温度応答特性	製品信頼性科	岩田晋弥	No. 12013
半導体デバイス作製用スパッタ装置と薄膜作製	制御・電子材料科	田中恒久	No. 12014
		山田義春	

(b)出版物

当所の研究あるいは試験の成果を広く一般に公開して、府内産業技術水準の向上を図るため、依頼を受けて次の出版物に掲載し業務内容、活動状況等を紹介した。(17件)

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
New Borate Glasses for Ionics	南 努	Physics and Chemistry of Glasses:	_
		European Journal of Glass Science and	
		Technology Part B, 53 , 2 (2012) 17.	
内蔵センサを活用した情報機器のスマートメータ化	石島 悌、平松初珠	マルチメディア、分散、協調とモバイル	支援 23006
	山東悠介	(DICOMO2012)シンポジウム論文集	
		(2012) 873.	
レーザ焼入れの概要	<u>萩野秀樹</u> 、山口拓人	レーザ加工学会誌, 23, 2(2012) 87.	先行 18002
レーザによる表面改質	<u>萩野秀樹</u>	LPF News Letter, 1 (2012) 3.	先行 18002
レーザ焼入れおよびレーザ合金化	<u>萩野秀樹</u> 、山口拓人	スマートプロセス学会誌, 1,6 (2012)	発展 21001
		262.	
環境に優しい浸炭熱処理法を目指して(第2回)	横山雄二郎、水越朋之	熱処理, 52 ,5(2012)257.	中核 21001
- 真空浸炭における炭素濃度分布に及ぼす鋼表面	石神逸男、他		
に析出する煤の影響ー			
雰囲気制御下での摩擦摩耗特性評価システム	道山泰宏	大阪府立大学 Newsletter, 8 (2012)	特提 23030
		3.	
微細孔PVD硬質膜形成のための硫酸銅めっき浴中で	三浦健一、森河 務	表面技術, 63 ,4(2012)61.	特提 22012
の電析と溶解による Cu 微粒子形成	横井昌幸		

発 表 題 目	発 表 者 名	掲 載 誌 名	研究番号
複合微粒子による表面の親水・撥水化	木本正樹	「エレクトロニクス・エネルギー分野	_
		における超撥水・超親水技術」(2012)	
		107.	
カーボンナノチューブを用いた放熱材料	垣辻 篤、 <u>他</u>	これからの蓄・省エネルギー材料の開発	特提 23008
-軽さを活かした LED 照明への応用-		における機能性付与技術(2012)274.	
泉州タオル	宮崎克彦	繊維製品消費科学会誌,53 , 9 (2012)	支援 15005
		698.	
ニオイに関する基礎知識	喜多幸司	加工技術,47,11(2012)649.	_
その1 嗅覚とニオイ物質、ニオイの活用事例			
ニオイに関する基礎知識 その2 消臭・脱臭の	喜多幸司	加工技術,47,12(2012)713.	_
基礎知識と、消臭・脱臭製品の性能評価方法			
ニオイに関する基礎知識 その3 サンプリング	喜多幸司	加工技術,48, 2 (2013) 89.	_
バッグを用いる消臭・脱臭製品の性能評価方法			
-我が国の代表的な2つの静置法-			
接着技術とその応用	舘 秀樹	加工技術, 47 ,12(2012)705.	特提 24106
第1回 接着剤の基礎 接着原理と種類			
接着技術とその応用	舘 秀樹	加工技術,48, 2 (2013) 16.	特提 24106
第2回 接着剤の評価 -評価方法と表面処理法-			
JES 溶出クロム分析方法の検討	<u> 沙崎久芳</u> 、他	皮革科学, 58 ,1(2012)11.	特共23003

(c)インターネットの活用

府内企業の技術レベルの向上と当所利用の便宜をはかるため、研究、依頼試験、設備機器、所蔵図書情報、催事情報について提供を行うと共に、電子メールによる指導相談への対応も実施した。

【提供情報】

催事情報 : 技術フォーラム、機器利用講習会、月例セミナー、その他関連団体の研究会、講習会研究情報 : 研究テーマ及び概要、研究成果の概要、テクニカルシート、TRIシリーズ記事等

業務案内:業務紹介、機器・設備紹介、各種手続案内

研究所概要 : 利用者の便宜を図るための案内情報、施設と実験室、研究科ホームページ

その他:他機関へのリンク情報

ダイレクト・メールサービス:希望者に対し、最新の情報を電子メールで随時送付する。

【利用状況】

アクセス件数:327,996件 ダイレクトメール発信回数:65回、194件

ページビュー総数: 7,193,884ページ ダイレクトメール登録数(年度末):9,519件(前年度末:8,586件)

(B)図書資料の整備

府内企業の技術向上に役立つ技術資料を内外から広く収集し、技術指導・相談、依頼試験、研究業務に活用したほか、一般企業に対しても公開し、企業の技術情報収集の支援を行った。

図書整備状況

平成24年度購入	冊 数	項目	冊数
購入洋雑誌	13種	所蔵単行本	9860 ∰
購入和雑誌	13種 所蔵逐次刊行物		4841 種

(C)展示会・相談会

国、大阪府、各種団体および新聞社等が開催する技術交流プラザやテクノメッセなどの技術展示会に当所の研究ならびに指導等の成果を出展し、成果普及を行うとともに業務のPRを図った。平成24年度の実績は次のとおりである。(10件)

名称	開催日	開催場所
ビジネスマッチングフェア2012	24. 4.24~24. 4.25	マイドーム大阪
関西機械要素技術店	24. 10. 3~24. 10. 5	インテックス大阪
和泉市商工祭り	24. 10. 27~24. 10. 28	池上曽根史跡公園
府大市大ニューテクフェア	24. 11. 21	大阪産業創造館
南都元気企業マッチングフェア2012	24. 11. 21	マイドーム大阪
モノづくりフェスタ in 生野・東成2012	24. 11. 22~24. 11. 23	生野区民センター
関西三都ビジネスフェア	24. 11. 28~24. 11. 29	マイドーム大阪
ビジネスエンカレッジフェア2012	24. 12. 5~24. 12. 6	グランキューブ
次世代ナノテクフォーラム2013	25. 2.19	千里ライフサイエンスセンター
新プロジェクト創出コラボレーション促進事業成果発表会	25. 3. 19	マイドーム大阪

(D) 新聞掲載・テレビ放映

新聞掲載(27件)

掲載月日	掲載紙	記 事 見 出
24. 4. 1	読売新聞	府、大都市制度室を拡充 エネルギー政策課も新設
24. 6. 5	日刊工業新聞	"責任持つ" 支援を重視 独法化機に実行計画 大阪府立産業技術総合研究所理事長 古寺雅晴氏
24. 6. 6	朝日新聞	府公衆衛生研と市環境科研統合
24. 6. 6	日本経済新聞	大阪府・市の産業関連4研究所 2機関に統合へ 15年度
24. 6. 6	産経新聞	大阪府市 2 研究所を統合へ 独立法人化、非公務員に
24. 6. 6	読売新聞	産技研と市工研 大阪府市統合へ
24. 7. 2	日経産業新聞	圧電素子、変換効率高く 大阪府立大 従来の10~20倍 発電に特化 鉛を含まず
24. 7. 5	泉北コミュニティ	実験の好きなこどもら集まれ 子どものための工作・実験教室 あゆみ野で8月2日
24. 7.14	リビング	あなたの街のお出かけ情報です 「こどものための工作・実験教室」「機器等の実演・体験」
24. 7.28	日本経済新聞	中小向け受託研究 好調 大阪府立産技研今年度目標超す
24. 8. 2	機械新聞	金型総研が第50回総会 山本進二会長あいさつ 7月9日
24. 9.11	日本経済新聞	統合見据え合同発表会 大阪府市 2 研究所 11 月に
24. 9.18	日刊工業新聞	初の合同研究発表会 大阪市立工業研究所と大阪府立産業技術総合研究所
24. 9.28	産経新聞	企業の技術支援 大阪府市タッグ 研究所合同で11月発表会
24. 11. 5	日刊工業新聞	ものづくりイノベーション支援 大阪府25件決定
24. 11. 28	日本経済新聞	中小の研究開発 先端機器で支援 大阪府・市の機関、割安解放など 独法化で柔軟な協力可能に
25. 1. 8	日本経済新聞	産技研と市工研 来月に合同発表 大阪・和泉で
25. 1.18	日刊工業新聞	日本経済の成長エンジン-大阪の看板企業 大阪ものづくり優良企業賞 2012 大阪府が 70 社を選定
		技術力を内外にアピール
25. 1.25	日本物流新聞	府立産技総研 市立工業研究所と合同発表会 金属からバイオまで75テーマ
25. 2. 5	日刊工業新聞	有機 TFT 液晶ディスプレー 解像度 9 倍、高速表示
25. 2.11	日刊工業新聞	PET 樹脂に高速応答 有機トランジスタ開発 安価な電子タグ実現へ 大阪府産技研・阪大
25. 2.14	日本経済新聞	東大阪市と連携協定 産技研、中小支援を強化
25. 2.14	日刊工業新聞	東大阪市と大阪府立参技研の中小技術支援で協定
25. 2.14	朝日新聞	「モノづくり」応援しまっせ 東大阪市と府産技研が協定
25. 2.17	読売新聞	ものづくり発展へ産技研と包括協定 東大阪
25. 3. 22	日本経済新聞	中小の技術開発支援協定 大阪府立産業技術総合研究所と堺市
25. 3.25	日刊工業新聞	大阪府産技研と協定 堺市、市内産業を高度化

雑誌掲載(1件)

掲載月	掲載雑誌	記 事 見 出
24. 10	プレス技術	現地相談の積極展開で地場企業の課題や問題を迅速に解決

テレビ放映(2件)

放送月日	放送局	番組名	内容
24. 7.24	よみうりテレビ	かんさい情報ネットten!」	無響室(再放送)
		(若一ミステリー傑作選)	
25. 1.29	よみうりテレビ	朝生ワイド す・またん	静電気
25. 3.30	朝日放送	一志相伝 SP ~1300 年前の技	皮革
		に挑む奈良印傅職人親子~	

6. 技術交流業務

(1) 団体・研究会への支援

当所では、産学官や異分野・業種の技術交流を推進するため、公益的な目的で設立された様々な技術分野の団体・研究会等の行う講習会、講演会、見学会等の活動支援を行っている。

交流団体及び担当者

【共催団体:10団体】産技研が主体となって企画運営する団体

団 体 名		担当者
社団法人 大阪府技術協会	顧客サービス課	竹田裕紀
大阪府鍛圧熱処理技術センター協力会	金属材料科	水越朋之、横山雄二郎
	加工成形科	白川信彦
生産技術研究会	加工成形科	萩野秀樹
	金属表面処理科	岡本明
	業務推進課	野口修一
センシング技術応用研究会	制御・電子材料科	田中恒久、村上修一、宇野真由美、金岡祐介
産技研技術開発協力会	金属表面処理科	山内尚彦、足立振一郎
金型綜合技術研究会	加工成形科	南 久、吉川忠作、奥村俊彦
繊維応用技術研究会	繊維・高分子科	菅井實夫
大阪府電磁波利用技術研究会	製品信頼性科	松本元一、田中健一郎
ニューセラミックス懇話会	化学環境科	稲村 偉、垣辻 篤、渡辺義人、長谷川泰則
	経営戦略課	久米秀樹
皮革消費科学研究会	皮革試験所	稲次俊敬、道志 智、奥村 章、吉川章江

【協力団体:13団体】産技研が運営に協力している団体

団体名		担当者
社団法人日本熱処理技術協会 西部支部	金属材料科	水越朋之
	金属表面処理科	三浦健一
社団法人日本防錆技術協会 関西支部	金属表面処理科	左藤眞市、西村 崇
大阪府表面処理技術研究会	化学環境科	木本正樹、吉岡弥生、増井昭彦、山元和彦
		櫻井芳昭、日置亜也子、舘 秀樹、井上陽太郎
	経営戦略課	浅尾勝哉
近畿歯車懇話会	加工成形科	山口勝己
電気鍍金研究会	金属表面処理科	森河 務、中出卓男
泉州織物構造改善工業組合	繊維・高分子科	宮崎克彦
大阪タオル技術研究会	繊維・高分子科	宮崎克彦
大阪タオル振興協議会	繊維・高分子科	宮崎克彦
日本真空学会 関西支部	制御・電子材料科	松永 崇、岡本昭夫、山田義春
社団法人低温工学・超電導学会 関西支部	制御・電子材料科	筧 芳治、左藤和郎
社団法人表面技術協会 関西支部	金属表面処理科	森河 務、中出卓男
大阪府鍍金工業組合	金属表面処理科	森河 務、中出卓男、三浦健一
ジオシンセティックス技術研究会	繊維・高分子科	赤井智幸、西村正樹

(2)職員の派遣

(A) 講師の派遣(63事業、199人日)

【理事長】(2事業、2人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
平成 25 年 新春・技術交流会	ものづくり産業の在り方	(社)大阪府技術協会	25. 1.18	古寺雅晴
オープンイノベーションによる	オープンイノベーションによる技	(公財)大阪産業振興機構	25. 2.15	古寺雅晴
技術革新、オープンイノベーショ	術革新、オープンイノベーション			
ンの活用事例とニーズ説明会	の活用事例とニーズ説明会			

【理事】(1事業、1人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
「プラスチック材料と成形技術」	プラスチック材料について	パナソニック(株)人材カンパニー	24. 6.21	水谷 潔
セミナー				

【経営企画室】(2事業、5人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
第48回真空技術基礎講習会	真空応用技術他	日本真空学会関西支部	24. 5. 22	野坂俊紀
			\sim	
			24. 5.25	
第3回定例会	カーボンナノコイルを用いた電波	南信州CMC活用研究会	25. 3. 6	野坂俊紀
	吸収体材料への応用			

【経営戦略課】(1事業、1人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
バッテリー戦略研究センター	「太陽電池について〜大阪の現状と	大阪府商工労働部	25. 3.15	浅尾勝哉
特別セミナー	産技研における研究開発の取組み~」	新エネルギー産業課		
	「産技研のサービスと機器のご紹介」			

【顧客サービス課】(1事業、1人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
商工会・商工会議所経営指導員	産業技術総合研究所の支援内容と	大阪府商工会連合会	24. 9.10	竹田裕紀
研修(経営革新入門編)	利用案内について			

【業務推進課】(4事業、5人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
平成 24 年度	産技研の技術支援・・・私の場合	産技研技術開発協会	24. 6.27	石神逸男
產技研技術開発協力会総会	を例に・・・			
金属熱処理技能検定	鉄鋼材料の組織及び変態と状態図	大阪府鍛圧熱処理技術センタ	24. 7.21	石神逸男
学科試験講習会		一協力会		
第62回パソコン通信分科会	フェイスブックの利用方法とその	生産技術研究会	24. 12. 11	新田 仁
	リスク(仮題)			平松初珠
フレンドシップサロン	大阪府における知材支援と技術支	(社)生産技術振興協会	25. 3 8	新田 仁
	援について			

【加工成形科】(12事業、21人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
MOBIO • S-Cube • SBI	交流会での話題提供	大阪府商工労働部	24. 5.24	白川信彦
ビジネスマッチング交流会	(ミニセミナー)	商工振興室 ものづくり支援課		
H 24 年度 助成研究成果発表会	改良バーフロー法による溶融樹脂	(公社)金型技術振興財団	24. 7.31	吉川忠作
セミナー	流れに及ぼす金型表面性状の影響			
	の評価			
賛助会員部会西日本支部総会	チタン粉末のレーザ積層造形(仮)	(一社)日本チタン協会	24. 9. 6	中本貴之
プレス加工技術セミナー	プレス加工技術セミナー	八尾商工会議所	24. 9.19	白川信彦
平成24年度プラスチックスクール	2学期 1回目	(社)西日本プラスチック製品	24. 9.20	吉川忠作
	プラスチック成形について	工業協会		

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
和泉イブニングセミナー	「金属粉末RP(ラピットプロトタ	(社)大阪府技術協会	24. 9.21	中本貴之
	イピング) 法にわるものづくり」			
	「X線CTによる三次元スキャ		24. 9.28	四宮徳章
	ン」			
技術講習会	成形技術(特にパージ)について	愛知県プラスチック成形工業	24. 10. 12	吉川忠作
		組合		
プラスチック成形加工セミナー	プラスチック成形加工セミナー	八尾商工会議所	24. 10. 22	吉川忠作
和泉イブニングセミナー	「プラスチックスの製品化技術」	(社)大阪府技術協会	24. 11. 20	奥村俊彦
	・プラスチック材料・評価・加工①		24. 11. 27	
	プラスチックスの性質・特性・			
	各種プラスチック材料			
	・プラスチック材料・評価・加工②			
	プラスチックスの試験・分析・			
	各種プラスチック加工法			
	「プラスチックスの製品化技術」		24. 12. 4	吉川忠作
	・プラスチック製品・金型・CAD/		24. 12. 11	
	CAE①			
	射出成形加工の原理、			
	プラスチック製品の設計			
	・プラスチック製品・金型・CAD/			
	CAE2			
	プラスチック用金型、CAD/			
	CAE/RP			
ものづくり大学校	放電加工の基礎とマイクロ加工へ	東大阪市立産業技術支援セン	24. 11. 7	南久
(11月・夜間講座)	の応用について	ター		
	レーザ加工の基礎と最新技術につ		24. 11. 14	山口拓人
	いて			
	レーザ積層造形-金属粉末ラピット		24. 11. 20	中本貴之
	プロトタイピング(RP)-について			
関西支部若手の会 第 24 回先端	「高精度CAE解析に必要な材料	日本塑性加工学会関西支部	24. 12. 7	四宮徳章
塑性加工技術コロキウム	試験の基礎と解析事例」	, , , , , , , , , , , , , , , , , , , ,		
	板材成形CAEにおける入力データ			
	と解析事例について			
東大阪市モノづくり開発研究会	加工プロセスⅡ (成形加工)	東大阪市モノづくり開発研究会	24. 12. 13	白川信彦
(中堅人材育成コース)		7 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		
平成24年度プラスチックスクール	3学期1回目	(社)西日本プラスチック製品	25. 1.17	吉川忠作
, , , , , , , , , , ,	プラスチック成形について	工業協会		I 7 .: 3:11
	3学期2回目		25. 2.21	奥村俊彦
	プラスチック成形について		20. 2.21	N111000
平成24年度第4回	レーザー焼入れ、レーザー焼入れ	(一社)日本熱処理技術協会	25. 2. 15	山口拓人
型型技術セミナー	の基礎について	() 日本系统全主义的硕士	20. 2.10	H H 1/1/
がベンエス川してノ	V/ASIMENCE OV 10			

【金属材料科】(10事業、12人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
熱処理技術者のための基礎講習会	表面熱処理作業	(一社)日本熱処理技術協会	24. 5.25	水越朋之
電気鍍金研究会 研究例会	トライボロジーの基礎と評価方法	電気鍍金研究会	24. 6. 6	道山泰宏
金属熱処理技能検定	加熱及び冷却装置、温度測定法、 大阪府鍛圧熱処理技術センター 24		24. 7.21	水越朋之
学科試験講習会	温度自動制御法	協力会		
熱処理技術に関する中堅技術者	金属材料の破壊現象 (一社)日本熱処理技術協会西 24		24. 8. 3	水越朋之
交流講座	~疲労破壊を中心に~ 部支部			
軽金属学会第90回シンポジウム	共通資料による試験結果 I	(一社)軽金属学会	24. 9.14	平田智丈
「軽金属材料の摩擦攪拌接合	摩擦攪拌接合法によるアルミニウム			
(FSW) J	と鋼の異種金属接合			
講演会	軽金属材料における摩擦攪拌接合	(一社)軽金属学会 関西支部	24. 12. 17	平田智丈
	(FSW) について			
金属熱処理法セミナー	厚い表面硬化層形成を実現する	八尾商工会議所	24. 1.31	道山泰宏
耐久性と省エネルギーを向上さ	チタン合金の新しい熱処理法			
せた環境にやさしい金属熱処理	ガス消費の著しい削減が可能な鋼			水越朋之
法	の新しいCOガス			
東大阪市モノづくり開発研究会	金属材料の破損と破断面観察	東大阪市モノづくり開発研究会	25. 2.14	水越朋之
(トラブルシューター育成コース)				

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
新分野進出支援講座	異種金属接合技術について	京都府中小企業技術センター	25. 3. 6	平田智丈
「異種金属接合技術セミナー」				
技術講習会	X線による残留応力と残留オース	西部金属熱処理工業(協組)	25. 3. 12	小栗泰造
	テナイトの測定			
	SEM/EBSD による結晶方位解析			平田智丈

【金属表面処理科】(13事業、29人日)

【金属表面处理科】(13事業、29人日)							
事業名等	テーマ名等	依頼者	派遣日	派遣職員名			
大阪高等めっき技術訓練校	①受講ガイダンス	大阪府鍍金工業組合	24. 4. 5	森河 務			
	②第1回合同訓練研修会		24. 5. 19				
	③機械部品へのめっき、クロムめっき		24. 9.13				
	④第2回合同訓練研修会		24. 10. 20				
	⑤評価研修会		24. 12. 6				
	⑥研究論文発表・評論会、卒業式		25. 3. 7				
	ドライコーティング		24. 11. 15	三浦健一			
	①実務研修会		24. 7. 5	中出卓男			
	②クロムめっき(装飾)		24. 8. 30				
for a lift of hardeness to the side	③評価研修会(電解式膜厚測定)		24. 12. 6	1.#			
第47期「包装管理士講座」	「防錆・防湿技法」	(公社)日本包装技術協会	24. 7. 11	左藤眞市			
The NE A Trada A Trada let A	- V// port	関西支部	24. 7. 19				
電気鍍金研究会 研究例会	チタンへの前処理方法がめっき	電気鍍金研究会	24. 6. 6	長瀧敬行			
가 나타시안) - HH 1- 약 2#757 A	密着性に及ぼす影響		04 0 00	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
めっき技術に関する講習会 6月例会	めっきの皮膜の密着性入門	日本鍍金協会 十日会	24. 6.28	森河 務			
第47期「包装管理士講座」	「防錆・防湿技法」	(公社)日本包装技術協会	24. 7. 4	左藤眞市			
,,, ,,, <u></u> ,,,		関西支部					
電気めっき技能検定試験(学科試験)	電気めっき学科指導	大阪府鍍金工業組合	24. 8. 1	森河 務			
の予備講習会		3,1,1	24. 8. 8	.,,,,			
			24. 8.21				
電気めっき技能検定試験(実技試験)	電気めっき実技指導	大阪府鍍金工業組合	24. 7. 7	長瀧敬行			
の予備実地研修会							
金属熱処理技能検定	金属材料の種類と材料欠陥	大阪府鍛圧熱処理技術センター	24. 7.21	三浦健一			
学科試験講習会	材料試験及び検査	協力会					
平成24年度めっき技術短期講習会	よくわかるめっきの基礎	大阪府鍍金工業組合	24. 10. 30	森河 務			
第52回防錆技術学校面接講義	めっき科「銅・ニッケル・クロム	(一社)日本防錆技術協会	24. 9. 6	中出卓男			
	めっき」						
	防錆包装科「防湿包装」		24. 9. 7	左藤眞市			
ものづくり大学校	「めっき技術の基礎とその応用」	東大阪市立産業技術支援センター	24. 10. 5	中出卓男			
(10月・夜間講座)	「腐食防食技術の基礎		24. 10. 19	左藤眞市			
	~腐食を中心に~」		24. 10. 26				
モノづくり人材の育成・再教育	腐食・防食に関わるトピックス	(公社)関西経済連合会	24. 12. 18	左藤眞市			
に資する実践的プログラム	(トラブル事例など)						
「金属・材料工学」							
平成 24 年度第3回熱処理技術	「PVD硬質膜への微細孔形成に	(一社)日本熱処理技術協会	24. 11. 16	三浦健一			
セミナー	よる潤滑性向上」について	(11) = 1.44/1.754/- A		de I I - I II			
第74回日本熱処理技術協会講演	小物部品のバレル式プラズマ浸	(一社)日本熱処理技術協会	24. 11. 27	榮川元雄			
大会内 依頼講演「小物部品の	炭・窒化大量処理システムについ						
バレル式プラズマ浸炭・窒化	て						
大量処理システム」							

【制御・電子材料科】(4事業、68人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
第 48 回真空技術基礎講習会	真空応用技術他	日本真空学会関西支部	24. 5. 22 ~ 24. 5. 25	岡本昭夫 佐藤和郎 田中恒人 村上修一 宇野真由美 松永 崇 日下忠興 金岡祐介
				山田義春

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
第 129 回定例研究会	「酸化クロム薄膜ひずみゲージを用	(一社)日本真空学会	24. 8. 2	松永崇
「広がるコーティング技術」	いた柔軟な四軸触覚センサの開発」			
「MEMS プロセス実習講座」	(1)マイクロマシニングのための	センシング技術応用研究会	24. 11. 26	佐藤和郎
	基礎知識		\sim	田中恒久
	(2)シリコンマイクロマシニング		24. 11. 30	村上修一
	技術			宇野真由美
				松永崇
				金岡祐介
ものづくり大学校	「フォトリソグラフィ、レーザ描	東大阪市立産業技術支援センター	24. 11. 28	村上修一
(11 月・夜間講座)	画を活用した微細加工」について			

【製品信頼性科】(6事業、9人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
センシング技術応用セミナー	【製品技術紹介】	センシング技術応用研究会	24. 6.15	山東悠介
エコロジー社会を支える先端技術	[LED 等各種光源の光学的・電気的			
~スマートエネルギーと	特性の測定」			
センシング~				
第47期「包装管理士講座」	「緩衝設計技法」	(公社)日本包装技術協会	24. 7.13	中嶋 隆
	「包装貨物および容器の試験法」			高田利夫
				津田和城
				細山 亮
大阪工業経営研究会	工場における省電力の考え方に	大阪工業経営研究会	24. 7.26	村上義夫
	ついて			
包装管理士会ミニセミナー	(仮)輸送包装研究の動向について	日本包装管理士会 関西支部	24. 9.27	中嶋隆勝
第6回「緩衝包装設計実践コース」	講義および演習指導	(公社)日本包装技術協会	24. 10. 31	津田和城
石川県次世代産業育成講座	「環境試験室を用いた繊維・高分子	(財)石川県産業創出支援機構	24. 11. 28	山本貴則
新技術セミナー	製品の評価技術」			

【化学環境科】(4事業、9人日)

事業名等	テーマ名等 依頼者		派遣日	派遣職員名
若手技術者の研修事業	「複合微粒子	関西ゴム技術研修所	24. 4.20	木本正樹
	ー調整方法および応用展開ー」			
第 48 回真空技術基礎講習会	真空応用技術他	日本真空学会関西支部	24. 5. 22	長谷川泰則
			\sim	
			24. 5.25	
ものづくり大学校 (9月夜間講座)	「プラスチックの基礎」について	東大阪市立産業技術支援センター	24. 9. 6	吉岡弥生
	「FRPーマトリックス樹脂、強化材、		24. 9.13	木本正樹
	繊維表面処理-」について			
	「FRP の成形、評価およびその他の		24. 9.20	木本正樹
	プラスチック系複合材料」について			
次世代ナノテクフォーラム 2013	活動報告(産技連ナノテク分科会の	(独法)産業技術総合研究所	25. 2.19	木本正樹
	活動内容の報告)	関西センター		

【繊維・高分子科】(10事業、17人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
第 81 回例会「液晶ディスプレイ	偏光フィルム用二色性色素の開発	(一社)近畿化学協会	24. 4.24	櫻井芳昭
と機能性色素の最前線」				
第 48 回真空技術基礎講習会	真空応用技術他	日本真空学会関西支部	24. 5. 22	井上陽太郎
			\sim	
			24. 5.25	
H24年度「なつやすみこども講座」	サイエンスに挑戦!	(公財)八尾市文化振興事業団	24. 8.26	櫻井芳昭
	②~光の不思議!万華鏡をつくろう~			
ものづくり大学校	「接着の基礎」について	東大阪市立産業技術支援センター	24. 9.27	舘 秀樹
(9月夜間講座)				
和泉イブニングセミナー	接着剤の基礎	(社)大阪府技術協会	24. 10. 5	山元和彦
「接着と粘着の基礎と応用」	接着剤の機能と応用		24. 10. 12	舘 秀樹
	粘着材の基礎と評価		24. 10. 16	
	粘着材の機能と応用		24. 10. 23	

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
スペシャリティ繊維市場開拓講座	ジオテキスタイルの現状と今後の	株繊維リソースいしかわ	24. 11. 8	赤井智幸
	展開について			
ものづくりセミナー	工業製品のトラブルに対する原因	岸和田商工会議所	25. 2. 7	浅澤英夫
	解析と防止策機能関連製品を中心に			
「次世代ナノテクフォーラム	「印刷技術による低環境負荷型次	(独法)産業技術総合研究所	25. 2.19	櫻井芳昭
2013」	世代白色有機EL照明素子の作製」	関西センター		
	「異形酸化チタン微粒子光触媒と			日置亜也子
	その固定化膜の作製」			
勉強会	吸水性について	大阪タオル技術研究会	25. 2.22	宮崎克彦
バッテリー戦略研究センター	「太陽電池について〜大阪の現状と	大阪府商工労働部	25. 3.15	櫻井芳昭
特別セミナー	産技研における研究開発の取組み~」	新エネルギー産業課		
	「産技研のサービスと機器のご紹介」			

【皮革試験所】(7事業、19人日)

事業名等	テーマ名等	依頼者	派遣日	派遣職員名
平成24年度	①革の出来るまで、革の種類と特徴	皮革消費科学研究会	24. 6.12	道志 智
皮革の知識講習会(基礎編)	②革の特徴(長所と短所)		24. 6.15	奥村 章
	助言者			稲次俊敬
				汐崎久芳
				吉川章江
平成24年度	①天然皮革と合成皮革・人工皮革	皮革消費科学研究会	24. 6.26	稲次俊敬
皮革の知識講習会(応用編)	の見分け方、品質表示			奥村 章
	②革の特性(実験) と手入れ・取り			
	扱い方法			
第3回くらしの体験講座	革の不思議	(財) 関西消費者協会	24. 7.25	道志 智
夏休みキッズ体験講座	~レザーでハンドメイドしてみよう			奥村 章
繊維製品・衣料品に関する情報	「皮革の基礎と品質管理の現状」	繊維製品品質情報懇談会	24. 7.27	稲次俊敬
を勉強する懇談会				
「靴を考える会」セミナー	皮革の基礎講座(I)革の特性	靴を考える会	24. 9. 12	稲次俊敬
	(1)物理強度、(2)水分特性			
	(3) 白い粉状物質について			
平成 24 年度皮革産業技術者研修	革製品のクレーム事例(物性)	東京都立皮革技術センター	24. 12. 12	稲次俊敬
「革製品の基礎知識」				
皮革産業に関する学習	かわのはなし	吹田市立岸部第一小学校	25. 3.12	道志 智
				奥村 章

(B) 役員・委員・指導員の派遣

佐 頼 団 体	兼職・兼務名	兼職・	兼	務期間	兼職・兼務者
(社)関西電子工業振興センター	KEC セミナー企画ワーキンググループ主査	20. 9. 9	\sim	24. 8.31	井上幸二
	KEC アドバイザリー委員	23. 2.25	\sim	25 年度総会	
	KEC 研究専門委員会委員	23. 7.13	\sim	25. 3.31	
センシング技術応用研究会	理事	20. 12. 4	\sim	26. 6.30	井上幸二
	幹事	23. 10. 4	\sim	25. 9.30	田中恒久
	幹事	23. 10. 4	\sim	25. 9.30	村上修一
	幹事	23. 10. 4	\sim	25. 9.30	宇野真由美
	幹事	23. 10. 4	\sim	25. 9.30	金岡祐介
	副会長	24. 4. 2	\sim	26. 6.30	古寺雅晴
	理事	24. 4. 2	\sim	26. 6.30	岡本昭夫
(一社)日本接着学会	理事・編集委員	20. 7.17	\sim	26. 3.30	木本正樹
	関西支部幹事・編集委員	22. 9. 2	\sim	24. 6.30	浅尾勝哉
(一社)日本防錆技術協会	防錆防食材料部会 顧問	21. 8. 12	\sim	在職中	左藤眞市
	JIS Z 1519 改正原案作成委員長	23. 12. 26	\sim	24. 11. 30	
(一財)大阪科学技術センター	技術開発委員会	22. 5.12	\sim	25. 3.31	野坂俊紀
	「カーボンナノ材料研究会」委員				
	ナノカーボン事業化推進事業に係る	22. 7. 7	\sim	25. 3.31	
	「大阪府地域結集型共同研究事業」				
	副研究統括				
	技術開発委員会委員	23. 7.20	\sim	25. 6.30	水谷 潔
	地球環境技術推進懇談会委員	23. 7.20	\sim	25. 7. 1	
(社)繊維評価技術協議会	ISO 標準化委員会委員	23. 4. 1	\sim	25. 3.31	木村裕和
大阪府商工労働部商工振興室	新商品の生産による新事業分野開拓事	23. 6. 1	\sim	25. 3.31	藤田直也
	業者認定事業評価委員				
中央職業能力開発協会	中央技能検定委員	23. 11. 29	\sim	26. 10. 31	木本正樹
関西広域連合	関西広域連合新商品調達認定制度評価	24. 1.16	\sim	26. 1.15	藤田直也
	委員会委員				
(社)電気化学会 関西支部	運営・企画委員	24. 1. 1	\sim	24. 12. 31	櫻井芳昭
環境分析技術協議会	第40期共同実験部会幹事	24. 2. 8	\sim	24. 10. 31	中島陽一
(公社)日本化学会 近畿支部	平成24年度幹事	24. 3. 1	\sim	25. 2.28	櫻井芳昭
日本機械学会関西支部	商議員(講演会等企画)	24. 3. 1		25. 2.28	吉川忠作
(一社)日本鉄鋼連盟標準化センター事務局	鉄鋼標準物質委員会委員	24. 4. 1	\sim	26. 3.31	塚原秀和
皮革消費科学研究会	理事	24. 4. 1	\sim	26 年理事会	
	理事	24. 4. 1	\sim	26 年理事会	道志 智
	アドバイザー	24. 10. 2	\sim	24. 10. 2	稲次俊敬
	アドバイザー	24. 10. 2	\sim	24. 10. 2	奥村 章
(公社)日本分析化学会近畿支部	幹事	24. 4. 2	\sim	25. 2.28	中島陽一
(財)大阪府産業基盤整備協会	理事	24. 4. 2	\sim	25. 3.31	古寺雅晴
(一社)日本熱処理技術協会西部支部	常任幹事	24. 4. 2	\sim	25. 3.31	水越朋之
	幹事	24. 4. 2	\sim	25. 3.31	三浦健一
	幹事	24. 4. 2	\sim	25. 3.31	石神逸男
(公財)新産業創造研究機構	アドバイザリー会議委員	24. 4. 2	\sim	25. 3.31	古寺雅晴
泉佐野商工会議所	参与	24. 4. 2	\sim	25. 3.31	沢村 功
関西サイエンスフォーラム	H24 科学技術の新しい芽を考える異分野 交流懇話会委員	24. 4. 2	\sim	25. 3.31	水谷 潔
(一財)化学研究評価機構 高分子試験・評価センター	調査研究企画委員	24. 4. 2	~	25. 3.31	水谷 潔
(一財)大阪科学技術センター COE 推進センター	副センター長	24. 4. 2	~	25. 3.31	野坂俊紀
堺商工会議所	堺技衆審査会委員	24. 4. 2	~	25. 3.31	野坂俊紀
大阪府商工労働部商工振興室	MOBIO 常設展示場出展	24. 4. 2	~	25. 3.31	井上幸二
.T	及びインキュベーション入居審査委員	04 4 6		25 2 21	₩1 + →
大阪府商工労働部商工振興室	経営革新計画等の審査会委員	24. 4. 2	\sim	25. 3.31	井上幸二

依 頼 団 体	兼 職 · 兼 務 名	兼職・	兼	務期間	兼職・兼務者
大阪府中小企業信用保証協会	新事業認定審査員	24. 4. 2	\sim	25. 3.31	井上幸二
大阪府研究開発型企業振興会(ORD)	アドバイザー	24. 4. 2	\sim	25. 3.31	井上幸二
(独)科学技術振興機構	研究成果最適展開支援 PG 専門委員	24. 4. 2	\sim	25. 3.31	木村裕和
		24. 4. 2	\sim	25. 3.31	木本正樹
		24. 4. 2	\sim	25. 3.31	中島陽一
(公社)日本材料学会	代議員	24. 4. 2	\sim	25. 3.31	森岡亮治郎
大阪府東部地区商工会議所 リサイクル推進協議会	リサイクル技術委員会委員	24. 4. 2	\sim	25. 3.31	井本泰造
(公財)大阪産業振興機構	設備審査委員会委員	24. 4. 2	\sim	25. 3.31	赤井智幸
ジオシンセティックス技術研究会	理事	24. 4. 2	\sim	25. 3.31	赤井智幸
(一社) 日本溶射学会	編集委員	24. 4. 2	\sim	25. 6.30	足立振一郎
生産技術研究会	顧問	24. 4. 2	\sim	26. 3.31	古寺雅晴
	参与	24. 4. 2	\sim	26. 3.31	山口勝己
(一財)大阪科学技術センター	フォトニクス技術フォーラム次世代 光学素子研究会学識委員	24. 4. 2	~	26. 3.31	岡本昭夫
(一社)KEC 関西電子工業振興センター	主査・研究専門委員会委員	24. 4. 2	\sim	26. 3.31	岡本昭夫
ニューセラミックス懇話会	副会長	24. 4. 2	\sim	26. 6.30	古寺雅晴
	理事(運営審議等)	24. 4. 2	\sim	26. 6.30	木本正樹
	幹事 (会務処理等)	24. 4. 2	\sim	26. 6.30	稲村 偉
	幹事 (会務処理等)	24. 4. 2	\sim	26. 6.30	垣辻 篤
	幹事(会務処理等)	24. 4. 2	\sim	26. 6.30	久米秀樹
	幹事(会務処理等)	24. 4. 2	\sim	26. 6.30	渡辺義人
	幹事(会務処理等)	24. 4. 2	\sim	26. 6.30	長谷川泰則
(社)日本皮革産業連合会	企画・研究開発委員会 日本エコレザー 審査分科会	24. 4. 2	~	26 年総会	稲次俊敬
	及び JES・ISO・JISプ ロジェクトチーム委員	04 4 0		07 0 01	₩ m #n -1-
軽金属学会関西支部	幹事	24. 4. 2	\sim	27. 3.31	平田智丈
日本包装学会	理事、研究委員長、輸送包装研究会幹事	24. 4. 2 24. 4. 2	\sim	在職中 在職中	中嶋隆勝
(公大)大阪府立大学 地域連携研究機構 地域連携研究推進課 産学官連携室	編集委員 サポイン「高発光効率かつ高耐久性蛍 光分子骨格を用いた薄膜白色光源用高 分子電界発光型青色発光材料及び色素 増感太陽電池用波長変換材料の開発」 アドバイザー	24. 4. 19	~	25. 2.28	津田和城 櫻井芳昭
(公社)日本材料学会 X線材料強度部門委員会	会計・企画幹事	24. 4.16	~	25. 3.31	小栗泰造
産学官連携推進協議会	産学官連携共同研究開発事業審査委員 産学官連携人材育成等事業審査委員	24. 4.19	~	25. 3.31	水谷 潔
(公社)大阪府立大学 産官学共同研究会	理事	24. 4.19	\sim	26 年総会	沢村 功
日本カーペット工業組合	インテリアファブリックス性能評価協議会	24. 4.23	\sim	25. 3.31	木村裕和
	オブザーバー委員	24. 4.23	\sim	26. 3.31	喜多幸治
大阪泉北地域活性化協議会	選定委員	24. 5. 1	\sim	25. 3.31	赤井智幸
(独)製品評価技術基盤機構	事故原因技術解析ワーキンググループ	24. 5. 1	\sim	25. 4.30	水谷 潔
	委員	24. 5. 1	\sim	25. 4.30	水越朋之
		24. 5. 1	\sim	25. 4.30	村上義夫
(社)日本溶接協会	表面改質技術研究委員会幹事	24. 5. 7	\sim	26. 3.31	上田順弘
大阪府商工労働部商工振興室	知財顕彰事業審査委員	24. 5. 8	\sim	25. 3.31	石神逸男
(一社)日本金属プレス工業協会	サーボプレス導入効果研究部会委員	24. 5.15	\sim	26. 3.31	白川信彦
(公社)日本包装技術協会関西支部	役員	24. 5.18	\sim	現職在職中	水谷 潔
	運営委員	24. 5.18	\sim	現職在職中	中嶋隆勝
	2012 日本パッケージングコンテスト 審査委員	24. 5. 18	~	現職在職中	高田利夫
西部金属熱処理工業協同組合	熱処理技能検定指導員等	24. 5.25	\sim	24. 8. 27	水越朋之
		24. 5.25	\sim	24. 8. 27	星野英光
		24. 5.25	\sim	24. 8. 27	横山雄二郎
		24. 5.25	\sim	24. 8. 27	三浦健一
		24. 5.25	\sim	24. 8. 27	榮川元雄
				25. 3.31	水谷 潔

依頼団体	兼 職 · 兼 務 名	兼職・	兼務期間	兼職・兼務者
(社)摩擦接合技術協会	理事	24. 5. 30	\sim 27. 3.31	平田智丈
(公財)大阪産業振興機構	おおさか地域創造ファンド事業事前審査員	24. 5.31	~ 24. 6. 4	藤田直也
大阪府鍛圧熱処理技術センター協力会	顧問	24. 5.31	~ 25. 3.31	古寺雅晴
八の人内政立人が心主人内でマックーのの方式	理事	24. 5.31	~ 25. 3.31	山口勝己
	理事	24. 5.31	\sim 25. 3.31	水越朋之
	理事	24. 5.31	\sim 25. 3.31	横山雄二郎
	理事	24. 5.31	\sim 25. 3.31 \sim 25. 3.31	白川信彦
(公社)精密工業会 関西支部	商議員	24. 5.31	\sim 25. 3.31	山口勝己
(社)大阪府技術協会	月例研究会 企画担当委員	24. 6. 1	\sim 25. 3.31	山口勝己
(工) 人例外1文的 防云	万例明九云 正画担目安良	24. 6. 1	\sim 25. 3.31 \sim 25. 3.31	中本貴之
			\sim 25. 3.31 \sim 25. 3.31	
(社)大阪ニュークリアサイエンス協会	参与	24. 6. 1	\sim 25. 5. 31 \sim 25. 5. 31	足立和俊 岡本昭夫
		24. 6. 1		
ICOOPMA2012 Chair	ICOOPMA2012 組織委員	24. 6. 3	\sim 24. 6. 7	村上修一
大阪府立大学大学院工学研究科内藤教授	に作る 見	04 6 7	05 0 01	********
レーザ加工学会 (ハヤ) litetur :	編集委員	24. 6. 7	~ 25. 3.31	萩野秀樹
(公社)地盤工学会	ISO/TC221 国内専門委員会委員	24. 6. 8	~ 25. 3.31	赤井智幸
大阪府鍍金工業組合	技能検定委員(指導員)等	24. 6.13	~ 24. 8.21	森河務
		24. 6.13	~ 24. 8.21	中出卓男
I HE	Vallet I Met A short I	24. 6.13	~ 24. 8.21	長瀧敬行
大阪府職業能力開発協会	前期技能検定委員	24. 6.13	∼ 24. 9. 3	水谷 潔
	・射出成形作業	24. 6.13	~ 24. 9. 3	吉川忠作
		24. 6.13	~ 24. 9. 3	奥村俊彦
大阪府職業能力開発協会	前期技能検定委員	24. 6.13	\sim 24. 8.17	中出卓男
	・電気めっき作業			
大阪府職業能力開発協会	前期技能検定委員	24. 6.15	~ 24. 8.27	水越朋之
	・一般熱処理作業	24. 6.15	\sim 24. 8.27	三浦健一
	・浸炭・浸炭窒化・窒化処理作業	24. 6.15	\sim 24. 8.27	星野英光
	・高周波・炎熱処理作業	24. 6.15	\sim 24. 8.27	横山雄二郎
		24. 6.15	~ 24. 8.27	三浦健一
		24. 6.15	\sim 24. 8.27	榮川元雄
大阪府電力利用合理化推進協議会	委員	24. 6.16	\sim 25. 6.31	出水 敬
	幹事兼電力利用合理化優良工場事業場 審査委員	24. 6.16	~ 25. 6.31	山東悠介
東大阪市	東大阪市製品化促進事業補助事業審査 委員	23. 6.21	∼ 25. 3.31	水谷 潔
(公財)堺市産業振興センター	評議員	24. 6.27	~ 28 年評議員会	沢村 功
	審査員	24. 10. 30	~ 25. 3.31	野坂俊紀
(一社)プラスチック成形加工学会 関西支部	運営委員	24. 7. 1	~ 26. 6.30	奥村俊彦
(一社)日本ゴム協会 関西支部	幹事・関西ゴム技術研修所運営委員	24. 7. 2	~ 25. 6.30	木本正樹
関西原子力懇談会	参与	24. 7.19	~ 25. 3.31	古寺雅晴
(一財)化学物質評価機構	標準化調査研究企画 WG 委員	24. 8. 1	~ 25. 3.31	木本正樹
高分子試験・評価センター		21. 0. 1	20. 0.01	714十41218
(独)産業技術総合研究所関西センター	外来研究員(研究支援アドバイザー)	24. 9. 1	~ 25. 3.31	浅尾勝哉
(財)京都高度技術研究所	A1, N~開発委員(アドバイザー)	24. 9. 6	~ 25. 3.31 ~ 25. 3.31	第 芳治
大阪中小企業顕彰事業実行委員会	審查委員	24. 9. 0	\sim 24. 9.27	水谷潔
(一財)大阪科学技術センター	評議員	24. 10. 1	~ 28年評議員会	
公立大学法人大阪府立大学	サポイン「高性能ナノ顔料の水性微細化	24. 10. 1	~ 27. 3.31	櫻井芳昭
地域連携研究機構産学官連携室	基盤技術の開発」アドバイザー	94 10 0	04 10 0	本田 枌
(一社)大阪発明協会	大阪府生徒児童発明くふう展審査員	24. 10. 9	~ 24. 10. 9	森田 均
産業技術連携推進会議(産総研つくば)	委員	24. 10. 12	~ 24. 10. 12	三浦健一
製造プロセス部会	ア	04 10 00	04.11.0	ゆか 辛
宮内庁正倉院事務所	正倉院宝物材質調査委員	24. 10. 29	~ 24.11. 2	奥村章
(一社)大阪発明協会	大阪優秀発明表彰選考委員	24. 11. 1	~ 25. 3.31	水谷潔
繊維応用技術研究会	役員	24. 11. 29	~ 26. 3.31	菅井實夫
大阪府職業能力開発協会	後期技能検定委員・射出成形作業	24. 12. 12	~ 24. 12. 12	吉川忠作
産業技術連携推進会議 製造プロス部会	表面技術分科会 検討員	25. 1.18	~ 25. 1.18	三浦健一

依 頼 団 体	兼 職 · 兼 務 名	兼職・	兼	务期 間	兼職・兼務者
大阪府職業能力開発協会	後期技能検定委員・組織試験作業	25. 2. 2	\sim	25. 2.9	水越朋之
		25. 2. 2	\sim	25. 2.9	星野英光
		25. 2. 2	\sim	25. 2.9	横山雄二郎
		25. 2. 2	\sim	25. 2.9	平田智丈
		25. 2. 2	\sim	25. 2.9	三浦健一
		25. 2. 2	\sim	25. 2.9	足立振一郎
		25. 2. 2	\sim	25. 2.9	榮川元雄
		25. 2. 2	\sim	25. 2.9	道山泰宏
		25. 2. 2	\sim	25. 2.9	武村 守

(C) 研究事業への協力

経済産業省 戦略的基盤技術高度化支援事業

事業テーマ	事業管理者	役職	期間	派遣職員
汎用元素(Al, N)のみによる高性能透明断熱エコ	財団法人京都高度技術研究所	アドバイザー	24. 9. 6 \sim 25. 3.31	筧 芳治
シートとナノ積層膜連続生産システムの開発				
高性能ナノ顔料の水性微細化基盤技術の開発	大阪府立大学	アドバイザー	24. 10. $1 \sim 25$. 3. 31	櫻井芳昭
高発光効率かつ高耐久性蛍光分子骨格を用いた、	大阪府立大学	アドバイザー	24. 4. 2 ~ 25. 2.28	櫻井芳昭
薄膜白色光源用高分子電界発光型青色発光材料				
および色素増感太陽電池用波長変換材料の開発				

大阪府 地域産業支援力強化事業補助金

事業テーマ	役職	期間	担当職員
半導体電子デバイスの塗布・印刷技術	連携機関	24.7. 1 ~ 25. 3.31	宇野真由美

兵庫県 兵庫県COEプログラム推進事業(先導的研究枠)

事業テーマ	役職	期間	担当職員
超音波による有害獣の忌避装置開発	連携機関	24. 9. 1 ~ 25. 3.31	田中恒久

堺市 産学官連携共同研究開発事業

事業テーマ	役職	期間	担当職員
資源循環・クワッドジェネレーション型有機エコ農産物生産システムの開発	連携機関	24. 4. 1 ~ 25. 3.31	井本泰造
			大山将央

(D) ものづくり B2B ネットワークとの連携

大阪府が実施するものづくり B2B ネットワークに寄せられる引き合い(ものづくりに関する様々な発注・企業紹介依頼)に対応可能な企業を探索して紹介した。平成 24年度は64件の企業紹介の依頼を受け、その内 23件の案件を探索した。

(3) 国内研究者等の招聘

所の客員研究員制度等により、優秀な若手研究員を招き、特別研究の効率的推進、研究所の活性化及び研究交流を図っている。 また、技術支援の一翼を担う者として、高度な専門技術、ノウハウを持つ技術者を技術専門スタッフとして招いている。

研究者名	期間	研究テーマ、従事業務等	受入身分
源 光一	19. 4. 1 ~	電磁環境試験室における依頼試験等の技術支援	技術専門スタッフ
小田 正明	19.11. 1 ~	特殊環境試験室(人工気象室、変温室、加減圧室)関係機器の操作及び操作方法の指導業務補助及び省エネ等の所環境対策の管理業務並びに所全体の電気設備保守管理業務補助	技術専門スタッフ
永畑 俊洋	24. 4. 1 ~	企業からの金属及び表面処理製品等に対する耐食性試験などの依頼試験・ 評価及び企業への試験方法に関する技術指導	技術専門スタッフ
田中 寿昭	22. 4. 1 ~	企業からの依頼試験・分析・測定及び企業への試験方法等に関する技術指導	技術専門スタッフ
吉川 章江	22. 6. 1 ~	皮革試験所において、皮革製造企業等から依頼される試験等の技術支援	技術専門スタッフ
山下 靖雄	24. 8.20 ~	大阪府ものづくりB2Bネットワークづくり支援及び技術研修生受入等業務	技術専門スタッフ
柴田 尚晃	24. 9. 1 \sim 25. 2.29	技術研究組合 単層 CNT 融合新材料研究開発機構との共同研究業務	研究開発スタッフ
永田 芳樹	24. 9. 1 ~	企業からの依頼加工・機器開放における加工技術指導と切削試験補助、及びワークショップ内の工作機械を用いた加工受託、指導育成、保守管理業務	技術専門スタッフ
出張 一博	24. 9.18 ~	企業等からの球面収差補正機能付走査透過電子顕微鏡利用支援等	技術専門スタッフ
車 溥相	24. 5. 7 ~	NEDO産業技術助成事業における研究開発支援等	技術専門スタッフ
石上 豊昭	25. 1. 1 \sim 25. 3.31	マイクロデバイス開発支援センター関連機器利用・保守支援、企業等への加工支援等	技術専門スタッフ

(4) 大学との連携

大学院大学と相互に連携し、大学における教育活動の一層の充実を図るとともに、当所の研究活動の推進および その成果の普及を促進することにより、産業および科学技術の発展に寄与することを目的として、各大学と連携大 学院に関する協定を締結している。

○連携協定締結の大学

大阪大学 大阪府立大学 大阪電気通信大学 桃山学院大学

(5) 自治体との連携

当所が実施する中小企業支援において、産業の振興及び地域社会の更なる発展に貢献することを目的として、個別の自治体と包括連携協定を締結した。

○包括連携協定締結の自治体等

東大阪市 平成 25 年 2 月 13 日締結 堺市 平成 25 年 3 月 21 日締結

(6) 大阪府立大学との包括連携協定

当所と大阪府立大学は、大阪の産業振興と地域社会の発展に貢献することを目的として平成22年1月に包括連携協定を締結し、 技術移転、人材育成、情報交流の三分野にわたり各種事業を実施している。平成24年4月に当所が地方独立行政法人に移行したことに伴い、包括連携協定の再締結を行うとともに、事業計画の策定と進捗を促すため、包括連携協議会を1回開催した。

	実施事業等	実施日
協議会	○包括連携協定協議会の開催 (開催場所:府立大学)	24. 9.13
技術移転	○産学官共同研究(産技研+府大+企業)	
	・基盤技術高度化支援(サポイン)事業 3件実施(1件はアドバイザーとして参画)	
	〇共同研究 8件実施(うち1件はNEDO若手グラントとして実施)	
	○産技研研究発表会で12件の共同研究成果をポスター展示	25. 2. 5
	○産技研研究発表会で吉村准教授の招待講演実施	25. 2. 5
	〇府大・市大ニューテクフェアでの共同発表2件	24. 11. 21
人材育成	○機器利用講習会	
	・温度計測の基礎知識とサーモグラフィによる温度計測	25. 01. 30
	Oセミナー	
	・産技研セミナー 電子顕微鏡『基礎』セミナー 開催	24. 12. 11
	・大阪ベイエリア金属系新素材コンソーシアムセミナー開催	24. 8.31, 25. 3.21
情報交流	○企業研究グループ	
	・機能性有機材料研究会 (櫻井)	
	・電子部品のめっき研究グループ(村上)	
	・大阪ベイエリア金属系新素材コンソーシアム (山口)	
	○大阪府の地域支援力強化事業に3件申請	
	○府大放射線研修に当所研究員参加	24. 4.12
	○コーディネータの交流会	24. 9. 6, 25. 2. 5
	○マテリアル工学科学生の当所の見学・実演会実施	24. 10. 19
	○府大図書電子ジャーナル利用研修	25. 2.21

(7) 大阪市立工業研究所との連携

当所と大阪市立工業研究所は双方の技術ポテンシャルを最大限に活用して大阪産業への技術支援機能を充実していくため、平成1 8年に「府市技術支援共同運営会議」を設置し、相互連携を深めながら、広範な技術分野にわたる技術支援を行っている。平成24 年度は以下の普及連携事業、若手研究員交流事業を実施した。また、事業計画の策定等を検討するため府市技術支援共同運営会議及 び企画部会を開催した。

	実施事業等	実施日
運営会議	○第7回府市技術支援共同運営会議・企画部会の開催	24. 7.11
普及連携	○技術支援マップの配布	展示会等で配布
	○第10回 技術シーズ発表会・特許フェア	24. 11. 1
	(大阪市立工業研究所・大阪府立産業技術総合研究所 合同発表会)の開催	
	○展示会での連携	
	・モノづくりフェスタ in 生野・東成 2012	24. 11. 22、24. 11. 23
	○大阪府立産業技術総合研究所・大阪市立工業研究所の研究発表会の開催	25. 2. 5
	○共同セミナーの開催	25. 2.28
	・次世代エネルギーデバイスの要素材料とプロセス	
	ー高性能化のカギを握る表面・界面制御技術― 平成25年2月28日	
研究連携	○西日本プラスチック製品工業協会環境事業	24. 11. 9~25. 3. 15
	CO2排出量評価システムの運用・保守、および管理環境の開発	
若手研究員	○第10回 技術シーズ発表会・特許フェアでの交流	24. 11. 1
交流	○大阪府立産業技術総合研究所・大阪市立工業研究所 研究発表会での交流	25. 2. 5

(8) イベント

(A) 府民開放

所内を一般開放して、「子供のための工作・実験教室」「機器等の実演・体験」を開催し、産業科学技術の普及啓発を行った。 【府民開放事業:平成24年8月2日(木)】

子どものための工作・実験教室

	教室テーマ	定員
陶芸教室	君だけのやきものをつくろう	30
化学実験教室	色と光の化学マジック	10
理科実験教室	自然を身近に「花のしおりを作ろう」	19
理科実験教室	振動・衝撃について理解を深めよう	15
理科実験教室	形を覚えるふしぎな金属で遊ぼう!	10
化学実験教室	電池を作ってめっきをしよう	10
染織教室	藍染で布を染めてみよう!	10
デジタル実験教室	プログラミング・ビークルを作ろう	6
工作教室	レーザを使ったオリジナル木製プレートの製作	8
皮革工芸教室	革製のコイン入れ・キーホルダーを自作しよう!	20
理科実験教室	真空の中でメダルを金ぴかに!	12
電子工作教室	金属探知機を作って迷路をぬけよう!	4
臨時教室	君だけのスライムを作ろう	_
	定員合計	154
	当日参加者合計	155

「機器等の実演・体験」参加者

身の回りのステンレス鋼

参加者合計

機器等の実演・体験テーマ 燃料電池自動車の展示及び試乗体験 温度の変化を目で見よう! 音が響かない世界を体験しよう 電磁波を知ろう 液体窒素の実験を楽しもう! スーパースローカメラの世界 目で見る真空の世界 電子顕微鏡で君の髪の毛を見てみよう 顕微鏡で見よう、日常の世界 プラスチック製品の作り方を知ろう 映像でみる鉄鋼材料・金属製品が出来るまで

約500人

(B) 新生! 産技研テクノフェア

産技研の地方独立行政法人化を記念して、「新生!産技研テクノフェア」を開催した。

平成24年7月5日(木) 10:00~18:30 日時: 会場: 地方独立行政法人大阪府立産業技術総合研究所

内容: 理事長あいさつ

> 来賓からのメッセージ 大阪府知事 松井 一郎

> > 浅田 均 大阪府議会議長 辻 宏康 和泉市長 有光 幸紀

大阪商工会議所 產業·技術振興委員長

基調講演 「世界に通用する中小企業のイノベーション」

> クラスターテクノロジー株式会社 代表取締役 安達 稔

36テーマ 内覧会 最新設備機器等の利用技術に関する「講習会」

> 主要設備機器等を全般的に紹介する「見学ツアー」 2コース 研究シーズなどを一堂に紹介する「パネル展示」 39テーマ

交流会

参加者数: 391 名

(C) 「地域イノベーション創出のための公設試験研究機関の役割等に関する調査」報告会

文部科学省が行った「公設試が地域のイノベーションに果たす役割調査」の報告会を開催し、大阪府内の自治体担当 者、公設試、大学のコーディネータ等が集まり公設試の役割について討論を行った。

- 1. 開会の挨拶 地方独立行政法人大阪府立産業技術総合研究所 理事長 古寺 雅晴
- 2. 「公設試が地域のイノベーションに果たす役割調査報告(文科省調査)」

財団法人全日本地域研究交流協会 総括主任研究員 中﨑 正好

- 3. 参加(機関)の特長ある産学連携の活動紹介
- 4. 討論会:地域の産学連携の中での公設試の役割をどの様に捉えていくべきか?

(大学との補完連携の強化に向けて)

モデレーター 地方独立行政法人大阪府立産業技術総合研究所 理事 水谷 潔

(9) 見学者

当所業務内容の普及・啓発ならびに当所の利用促進を図るため、国内外の業界団体・機関、企業、学生・生徒・児童、 府民等からの所内各施設の見学要請に応じ、積極的なPRに努めた。

【見学者/月別】

_ ,,	-												
	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	2月	3月	計
件 数	6	3	3	5	6	6	4	3	4	1	2	4	47
人数	64	62	56	133	42	94	219	40	93	3	28	57	891

【見学者/対象別】

	件 数	人 数
商工団体・組合等	13	219
企業・企業協力会等	17	263
学会・研究会等	1	55
教員・学生等学校関係	7	241
公設試・行政機関等	6	93
海外関係者	3	20
計	47	891

7. 職員の研修・海外派遣

職員の技術力の向上・自己研鑚を図るため、所内で各種研修を実施している。また国際学会等への海外派遣を行った。

【所内研修】

【所内研修】				
研 修 名	実施年月日	対象者	参加者	研 修 内 容
社会・組織人ビジネス	24. 4. 3~24. 4. 6	新採職員	4	ビジネスマナー、コミュニケーション 仕事の進め方等
法人業務・中期目標等	24. 4. 2, 24.10. 1	新採職員	13	基本理念や業務手法等
四八米切 一列口标号	24. 11. 1, 25. 1. 4	7911水100只	10	本个生态(来切)[44
府政課題・所内手続	24. 4. 9, 24. 10. 1	新採職員	22	 産技研の設立者(大阪府)・交付金の概要
711 21 1/1/2	24. 11. 1, 25. 1. 8	771777445	22	是这别少战亚百 (八)(A)(1) — 文门亚少战女
顧客SC総合受付研修	24, 4, 10	新採職員	10	依頼試験や設備貸与業務の概要、
AND A SHEET STORY	24. 9. 26~24. 10. 9	7012101002		受付・電話応対実践
C I 活動・プレゼン研修	24. 4. 11, 24. 10. 10	新採職員	13	行動指針、法人及び法人業務を積極広報
	24. 11. 6、25. 1. 7			
研究活動研修	24. 4.11, 24.10. 2	新採職員	13	国プロジェクト研究・科研費の概要
	24. 11. 5, 25. 1. 8			知財の概要等
労働安全衛生研修	24. 4. 12, 24. 10. 5	新採職員	38	機器操作や業務に必要な薬品、化学物質
	24. 10. 9, 24. 11. 7	技術専門スタッフ		高圧ガス、X線等の取扱
	24. 11. 8, 24. 11. 12	(非常勤職員)		
	25. 1. 9, 25. 1.10			
	25. 1.11, 25. 1.15			
企業見学・意見交換	24. 4.13, 24. 4.16	新採職員	5	大阪府の産業振興施策を考える
総務・会計事務研修	24. 4. 9, 24.10. 1	新採職員	21	総務・財務システム操作方法等習得
	24.11. 1, 25. 1. 7			
専門科・課研修	24. 8. 20, 24. 8. 28	新採職員	47	研究所全体を掌握し、所員として行動するた
	24. 8. 29			め、現場を知る
	24.10. 3~24.10. 5			
	24.11. 5~24.11. 9			
	25. 1. 9~25. 1.11			
	25. 1.15			
中小企業巡回研修	24. 6. 19, 24. 6. 27	新採職員	5	研究所コーディネータの指導の下、研究所と 自らの専門分野を中小企業にプレゼン
キャリアサホ゜ート研修	24. 7. 13, 24. 7. 19	新採職員	13	採用3か月経過後を振返り、成果出す段取り力 を養成
				新採同期互いの学術領域等を知り、絆を深め合う
展示会説明研修	24. 10. 5	新採職員	6	関西広域連合出展にて説明案内人を経験
新採研修報告会	24. 9. 3, 24. 10. 12	新採職員	81	OJT 報告・今後の展望を公開の場でプレゼン
	24. 11. 13、25. 1. 17			
MOBIO 若手職員研修	24. 5. 22	若手職員	27	MOBIO とそのコーディネータを紹介、企業見学
公設試若手職員研修	24. 11. 29、24. 11. 30	若手研究員	4	産総研・公設試研究員との交流・企業見学
経営戦略等研修	24. 3. 1	管理職	18	スーパー公設試として成長するために必要な ことを学ぶ
戦略的広報研修	24. 3. 5	課・科長	19	顧客拡大へつなぐ効果的な広報や情報収集に
(第1回課・科長塾)				ついて学ぶ
研究活動研修	24. 10. 15、25. 3. 22	研究員	60	提案公募型国プロ・科研費の情報提供等
	25. 3.26			
知財活動研修	24. 10. 16、25. 1. 21	研究員	90	知的財産の活用や保護等
情報セキュリティ研修	25. 1.21	全職員	70	情報等の適正管理・運用、個人情報の保護
所内データベース利用研修	25. 1.21	全職員	70	所内データベースの利用促進
省工衫省 CO2 推進研修	24. 12. 3	全職員	34	府みどり公社よりうちエコ診断員を招聘 講演等を実施
技術継承研修	25. 3. 22	全職員	53	技術の継承に関すること
労働安全衛生研修	25. 1. 9	全職員	66	労働安全管理に関すること
コンプライアンス研修	24. 11. 28	全職員	63	業務上必要な遵守すべき法令について顧問
				弁護士講義
人権研修	24. 11. 28	全職員	63	働く上での人権意識高揚を図る

研 修 名	実施年月日	対象者	参加者	研 修 内 容
健康管理研修	24. 11. 28	全職員	63	メンタルヘルスをはじめとした健康増進意識
				の高揚
AED使用研修	24. 7. 18, 25. 2. 19	全職員	40	救命・蘇生に必要な危機管理能力の向上
パソコン操作研修	24. 4. 10	全職員	46	ワード・エクセル・パワーポイント操作、ファイルサーバ構築法
	25. 1.28~25. 1.31			

【海外派遣】

職員名(所属)	期間	派遣先	内容
細山 亮	24. 6.18~24. 6.23	米国(カリフォルニア州	"IAPRI 2012"の出席、および「尖
(製品信頼性科)		サンルイスオビスポ)	度を考慮した非ガウス型ランダム振動生成法」
			の研究成果発表
村上修一	25. 1.27~25. 2. 3	米国(フロリダ州	"ICACC'13"の出席、および振動発電
(制御・電子材料科)		デイトナ・ビーチ)	デバイスに関する研究成果発表

8. 知的財産権

当所の職員が発明、考案、創作し、地方独立行政法人大阪府立産業技術総合研究所職務発明規程に基づき、権利を 当研究所が承継することに決定して平成24年度に出願又は移行したもの、新たに権利を取得したもの、権利を放棄した もの並びに産業財産権の実施状況及び府が承継したプログラム等を示すと次のとおりである。

(1) 出願した産業財産権(特許9件)

出願番号	発明の名称	発 明 者(外部)	出願(移行*) 年月日
特願 2012-099680	ダイヤモンド工具の製造方法	本田索郎(他2社)	24. 4.25
特願 2012-103800	殺菌処理方法および殺菌用結氷体の生成方法およ び装置、並びに殺菌用液体の生成方法	井川 聡(他1社)	24. 4.27
特願 2012-118055	焼結ダイヤモンドの放電加工方法	南 久、渡邊幸司(他1社)	24. 5. 23
PCT/JP2012/68219	有機トランジスタ及びその製造方法	宇野真由美(他1社)	24. 7.18
PCT/JP2012/68297	カーボンナノチューブ撚糸およびその製造方法	喜多幸司、西村正樹 赤井智幸(他1社)	24. 7.18
特願 2012-203189	ラック用制振装置	中嶋隆勝、津田和城(他1社)	24. 9.14
特願 2012-531631 (PCT/JP2010/65055)	水素発生用電極の製造方法及び水素発生用電極	中出卓男、森河 務 横井昌幸	*24. 10. 30
特願 2013-040993	Ni 基金属間化合物焼結体およびその製造方法	垣辻 篤(他1社)	25. 3. 1
特願 2013-059213	カーボンナノコイル生成用触媒の製造方法および このカーボンナノコイル生成用触媒を用いて生成 されるカーボンナノコイル	長谷川泰則、野坂俊紀(他1社)	25. 3.22

(2)権利が確定した産業財産権(特許19件)

登録番号	発明の名称	発 明者	登録年月日	共 有 権 者
特許 4962964 号	ガラスレンズ用成形型及びその製造	三浦健一	24. 4. 6	ミツエ・モールド・エンジニ
	方法			アリング㈱
特許 4963561 号	触媒及びその製造方法	岡本昭夫、松本茂生	24. 4. 6	
		野坂俊紀		
特許 4968854 号	カーボンナノチューブ集合体、カー	喜多幸司、西村正樹	24. 4.13	東洋紡㈱
	ボンナノチューブ繊維及びカーボ	赤井智幸		大阪府立大学
	ンナノチューブ繊維の製造方法			
特許 4974584 号	シート敷設用台船及び遮水シート	赤井智幸、西村正樹	24. 4.20	東洋建設㈱、東亜建設工業㈱
	の敷設施工方法			五洋建設㈱、㈱大林組
				㈱奥村組、㈱不動テトラ
				太陽工業㈱、錦城護謨㈱
				シーアイ化成㈱、横浜ゴム㈱
				(財)地域地盤環境研究所
				嘉門雅史
特許 4979266 号	保護板の連結方法	赤井智幸	24. 4.27	東洋建設㈱、東亜建設工業㈱
				五洋建設㈱、㈱大林組
				(㈱奥村組、㈱不動テトラ
				太陽工業㈱、錦城護謨㈱
				シーアイ化成㈱、横浜ゴム㈱
				(財)地域地盤環境研究所 嘉門雅史
特許 4994860 号	多孔質成型体およびその製造方法	広畑 健	24. 5. 18	
1寸月「4334000 万	多れ貝成至体わよいての製造力伝 ならびにその用途	/公州))	24. 0.10	古本バルガーエ来(M) 未来電池㈱
特許 4999345 号	ポリアミド絡合体及びその製造方法	吉岡弥生、浅尾勝哉	24 5 25	住友ベークライト㈱
17月 14777040 万	ペラテト	山元和彦、舘 秀樹	24. 0.20	LX 7 / 1 1 (M)
特許 5055528 号	衝撃強さ評価方法	中嶋隆勝	24. 8. 10	全国農業協同組合連合会
特許 5105375 号	転倒防止装置およびこれを備えた	中嶋隆勝	24. 10. 12	東洋ベンディング㈱
7011 0100010 万	自動販売機		24.10.12	TATE OF A DO D (MY
	□ #JRAJUIA			<u> </u>

登録番号	発明の名称	発 明 者	登録年月日	共 有 権 者
特許 5103598 号	機能性ポリイミド微粒子の製造方法	浅尾勝哉、山元和彦	24. 10. 12	住友ベークライト㈱
		吉岡弥生、舘 秀樹		
特許 5116082 号	高熱伝導複合材料	垣辻 篤	24. 10. 26	住友精密工業㈱
特許 5147439 号	廃棄物被覆用のキャッピングシート	西村正樹、赤井智幸	24. 12. 7	東洋紡㈱
特許 5177425 号	電磁波吸収装置及び吸収電磁波制御	田中健一郎、野坂俊紀	25. 1.18	大阪府立大学
	方法			
特許 5229732 号	微細炭素繊維撚糸の製造装置及び	喜多幸司、西村正樹	25. 3.29	東洋紡㈱
	製造方法	赤井智幸		
特許 5229934 号	高熱伝導性複合材料	垣辻 篤	25. 3.29	住友精密工業㈱
アメリカ 8163060	高熱伝導性複合材料	垣辻 篤	24. 4.24	住友精密工業㈱
中国	高熱伝導性複合材料	垣辻 篤	24. 8.29	住友精密工業㈱
200880022911.7				
中国	高熱伝導複合材料	垣辻 篤	24. 9. 5	住友精密工業㈱
200880017447.2				
中国	炭素系微細構造物群、炭素系微細	末金 皇、野坂俊紀	25. 1. 2	(独)科学技術振興機構
200580011596.0	構造物の集合体、その利用および			大塚化学㈱、大陽日酸㈱
	その製造方法			日新電機㈱、大阪府立大学

(3)権利を放棄した産業財産権(特許6件)

A D	76 88 - 4 4	7% 88 44	11 4 15 4	U +
登録番号	発 明 の 名 称	発 明 者	共 有 権 者	放棄年月日
特許 3543167 号	ガス用吸着剤	櫻井芳昭、 野坂俊紀	ダイネン㈱、エア・ウォータ㈱	24. 4.16
		夏川一輝、 四谷 任		
特許 3493533 号	フラーレン類の分離精製方法	野坂俊紀、夏川一輝	ダイネン(株)	24. 11. 21
		櫻井芳昭		
特許 4051550 号	錯体形成能有する化合物を結合さ	佐藤恭司	片山化学工業㈱	24. 12. 14
	せた繊維を使用した濾材			
特許 4431753 号	窒素酸化物含有空気の浄化方法お	小河 宏	大阪府立大学、大阪府立環境農	25. 1. 8
	よび浄化装置		林水産総合研究所	
特許 3903120 号	硫酸銅めっき方法	横井昌幸、森河 務	ダイソー㈱、街ウイング	25. 1.19
		中出卓男、左藤眞市		
イキ゛リス 1182229	Processes for the production of	浅尾勝哉、森田 均	住友ベークライト㈱	24. 8.21
	functional polyamic acid	大西 均、木本正樹		
	microfine particles	吉岡弥生		

(4) 所有産業財産権の実施状況(特許32件37企業、意匠1件1企業)

登録番号	発 明・考 案 の 名 称	実施企業数	契 約 期 間
特許2107803 号	虹色発色加工方法	1	22. 4. 1~25. 1.11
特許2119963 号	虹色発色加工方法	1	22. 4. 1~25. 1.11
特許2527120 号	硬ケラチン物質粉末の製造方法	1	24. 4. 1~24.12.24
特許2838361 号	受圧管一体型圧力センサ	1	20. 4. 1~25. 3.31
特許2909361 号	チタン金属の表面処理方法	1	21. 4. 1~25. 9.21
特許2949017 号	球状黒鉛鋳鉄及び球状黒鉛鋳鉄製接続部品	1	23. 4. 1~25.12.28
特許3104704 号	Ni-W合金の連続めっき方法	1	21. 4. 1~26. 3.31
特許3200615 号	人造真珠の製造方法	1	23. 4. 1~28. 3.31
特許3322662 号	溶融亜鉛-アルミニウム合金めっき被覆物	1	20. 4. 1~25. 3.31
特許3543174 号	炭素発熱体およびその製造方法	1	20. 6. 1~25. 6.20
特許3710053 号	ステンレス球状炭化物鋳鉄材料	2	22. 4. 1~27. 3.31
特許3737803 号	球状バナジウム炭化物含有高マンガン鋳鉄材料及びその製造方法	2	22. 4. 1~27. 3.31
特許3785422 号	温風加熱器	1	23. 4. 1~28. 3.31
特許3937128 号	球状炭化物合金白鋳鉄	2	24. 4. 1~29. 3.31

登録番号	発 明・考 案 の 名 称	実施企業数	契 約 期 間
特許3937128 号	球状炭化物合金白鋳鉄	1	22. 4. 1~26. 3.31
特許3928013 号	めっき用不溶性陽極	1	24. 3.17~29. 3.16
特許4110426 号	車両用衝突緩衝装置	1	24. 4. 1~29. 3.31
特許4189540 号	染料及び色素吸着剤及び処理方法	1	23. 2. 4~27. 3.31
特許4278060 号	耐摩耗性に優れた球状バナジウム炭化物含有低熱膨張材料	2	21. 3.19~26. 3.18
特許4395563 号	振動試験方法	1	23. 9.23~28. 3.31
特許4418921 号	転倒防止装置及びこれを備えた自動販売機	1	21. 12. 11~26. 3. 31
特許4418899 号	緩み止めナット	1	21. 12. 11~26. 3. 31
特許4436064 号	サーミスタ用材料及びその製造方法	1	22. 6. 1~27. 3.31
特許4674321 号	変異原物質吸着剤	1	23. 2. 4~27. 3.31
特許4678496 号	廃棄物処分場の遮水構造	1	23. 2.10~27. 3.31
特許4744019 号	チタン金属の表面処理方法	1	23. 5.20~28. 3.31
特許4827056 号	振動試験方法及び装置、並びに振動試験用プログラム	1	23. 9.23~28. 3.31
アメリカ 5466305 号	チタン金属の表面処理方法	1	24. 4. 1~26. 9.21
アメリカ 7291229 号	チタン金属の表面処理方法	1	24. 4. 1~29. 3.31
台湾 I 343438	車両用衝突緩衝装置	1	24. 4. 1~29. 3.31
アメリカ 7287930 号	車両用衝突緩衝装置	1	24. 4. 1~29. 3.31
中国00480000521	車両用衝突緩衝装置	1	24. 4. 1~29. 3.31
意匠 1171152号	車両衝突緩衝体	1	24. 4. 1~29. 3.31

(5) 出願中産業財産権の実施状況(3件)

出願番号	発明・考案の名称	実施企業数	契約期間
特願2008-8300号	表面被覆樹脂基体、その製造方法及びその製造装置	1	25. 1.17~30. 1.17
特願2010-214950号	衝撃強さ評価装置、方法およびプログラム	1	23. 2. 1~権利取得日
特願2012-531631号	水素発生用電極の製造方法及び水素発生用電極	1	24. 4. 2~権利取得日

(6) 承継した著作物(1件)

	 		
著作物の種類	著作物の名称	著 作 者	承継年月日
プログラム	回折格子の光学設計を行うコンピュータ	山東悠介、金岡祐介村上修一、佐藤和郎	24. 12. 7
	ノロクラム	村上修一、佐滕和郎	

(7) 著作物の実施状況(3件)

著作物の種類	著作物の名称	実施企業数	契約期間
プログラム	めっき加工業向PostgreSQLデータベース連携生産管理	1	25. 1. 1~25.12.31
	システム		
プログラム	鋳造業における汎用型生産管理システム	1	24. 12. 1~25. 11. 30
プログラム	鍍金加工業向け生産管理システム	1	24. 4. 1~25. 3.31

(8) ノウハウの実施状況(1件)

名称	実施企業数	契	約	期	間
撚糸製造に関するノウハウ	1	23. 12.	1~	~28.	11.30

付1. 所有知的財産権一覧表[特許148件(うち外国特許37件)、意匠1件、著作13件、ノウハウ1件]

	発 明・考 案・著作 の 名 称	発明、考案、著作者	共有権者
特許 2838361 号		鈴木義彦、野坂俊紀	日本リニアックス
		小川倉一	
特許 2909361 号	チタン金属の表面処理方法	佐藤幸弘、出水 敬	日本電子工業、田中
		曽根 匠	
特許 2949017 号	球状黒鉛鋳鉄及び球状黒鉛鋳鉄製接続部品	橘堂 忠、佐藤幸弘	水道技術開発機構
		浦谷文博、西村 章	
		花立有功、藤井俊之 水越朋之	
特許 3066225 号	制品貯埔	宮内修平、井本泰造	 日立造船
	Ni-W 合金の連続めっき方法	森河 務、横井昌幸	野村鍍金
[4] 0101701 /J		中出卓男、佐藤幸弘	ウイング
特許 3107544 号	旋回燃焼炉	宮内修平、井本泰造	大島造船所、高 享
		岩崎和弥	日立造船
特許 3200615 号	人造真珠の製造方法	高塚 正、上甲恭平	古田一人
特許 3227107 号		上甲恭平、近藤 敬	オリエント化学工業
	方法		
	タングステン合金の電気めっき方法	森河 務、横井昌幸	野村鍍金
特許 3322662 号	溶融亜鉛-アルミニウム合金めっき被覆物	小川倉一、花立有功	アルテス、日本化学産業
		水越朋之、足立振一郎 藤田直也、辻 栄治	
特許 3455705 号	電気銅めっき装置ならびに前記装置を使用した	横井昌幸、佐藤幸弘	 ウィング
村町 3499709 万	調めっき方法	森河 務、中出卓男	
特許 3458843 号		横井昌幸、佐藤幸弘	野村鍍金、オテック
1,11 0100010 0		森河 務、中出卓男	国光鍍金工業、ウィング
			大阪府鍍金工業組合
特許 3474239 号	フェノール樹脂成形材料	広畑 健	棚澤八光社、松下電工
特許 3478977 号		浅尾勝哉	住友ベークライト
	ならびにこれらの製造方法		
	吸い出し防止シート用長繊維不織布フィルター	赤井智幸、松本哲	旭化成工業、西松建設
特許 3504930 号	皮膜の形成方法及び皮膜被付与物	三浦健一、石神逸男	東研サーモテック
<u>快</u> 先 2507042 早	熱硬化型アミド酸微粒子、熱硬化型イミド微粒子	星野英光、榮川元雄	 住友ベークライト
付計 5507545 万	及び架橋イミド微粒子ならびにこれらの製造方法	(戊尼勝以	
特許 3543174 号	炭素発熱体およびその製造方法	広畑 健、高橋弓弦	メイホウ
特許 3575709 号		広畑 健、宮本大樹	リグナイト
		浅尾勝哉、四谷 任	
		薦田俊策	
特許 3710053 号	ステンレス球状炭化物鋳鉄材料	橘堂 忠、武村 守	三共合金鑄造所、岡本、西内滋典
		松室光昭	川野周子、山本悟、京都市
特許 3737803 号	球状バナジウム炭化物含有高マンガン鋳鉄材料	橘堂 忠、武村 守	三共合金鑄造所、岡本
性計 2705 400 日	及びその製造方法	松室光昭	
特許 3785422 号 特許 3845937 号		広畑 健 小川倉一、夏川一輝	 - 島津製作所、ホーチキ
竹町 3049391 万	NAED 9	櫻井芳昭、日置亜也子	西年教 [F/7]、 か - ノ 1
特許 3856535 号	光触媒体の製造方法	小川倉一、四谷 任	シャープ
14#1 0000000		日下忠興、吉竹正明	
		野坂俊紀	
特許 3887499 号	光触媒体の形成方法	野坂俊紀、小川倉一	シャープ
		四谷 任	
	光触媒膜及びその製造方法	小川倉一、野坂俊紀	シャープ
特許 3911355 号	光触媒体の作製方法	野坂俊紀、小川倉一	シャープ
#t=#r 001#00# !!	尼帕克田拉萨尼队士日五《数子尼队上尼亚士	四谷任	II I
	履物底用静電気除去具及び静電気除去履物底	木村裕和、豊田佳与	モリト ダイソー、ウイング
特許 3928013 号	めっき用不溶性陽極	横井昌幸、森河 務中出卓男、左藤眞市	ダイソ ー、 リインク
	l	工山毕力、圧膝具巾	<u> </u>

		発 明・考 案・著作 の 名 称	発明、考案、著作者	共有権者
性金	3937128 号		橘堂 忠、武村 守	
			松室光昭	
特許	3962773 号	原料吹き付け式カーボンナノ構造物製造方法	野坂俊紀	科学技術振興機構
		及び装置		大研化学工業、大陽日酸
				日新電機、大阪府立大学
	4016220 号		櫻井芳昭	ホーチキ
		蒸着膜形成方法	櫻井芳昭	ホーチキ
特許	4025943 号	機能性ポリアミド酸微粒子及び機能性ポリイミド		住友ベークライト
		微粒子ならびにこれらの製造方法	大西 均、木本正樹	
			吉岡弥生	
		センサ及び湿度ガス検出方法	大川裕蔵	ホーチキ
	4040635 号		井上幸二	プロアシスト
特許	4048522 号	ホルマリン廃液の自動処理装置	岩崎和弥、宮内修平	アスカメディカル
			井本泰造、山崎 清	
			呼子嘉博、小河 宏	
#±.⇒ケ	40010F0 F	遮水板、遮水板の連結構造及び遮水壁の施工	佐藤幸弘	吉明联出 古玉净凯工类
特計	4081659 万		赤井智幸、松本 哲	嘉門雅史、東亜建設工業 地域地盤環境研究所、大林組
		方法		奥村組、錦城護謨、鴻池組
				五洋建設、東洋建設、不動テトラ
特許	4106482 号	有機物発酵装置	宮内修平、井本泰造	日立造船、科学技術振興機構
ום ניו	4100402 7	11000元的农邑	岩崎和弥	日立追加、行子汉州派突伐将
特許	4110426 号	車両用衝突緩衝装置	中嶋隆勝	エヌケイシー、平岡金属工業
	4155442 号		木本正樹、日置亜也子	
	4189540 号		藤原信明、増井昭彦	10000000000000000000000000000000000000
13 11	1100010 .	XIIX O LIXXIIIX O PERSONALI	呼子嘉博	
特許	4278060 号	耐摩耗性に優れた球状バナジウム炭化物含有	橘堂 忠、武村 守	三共合金鑄造所、岡本
		低熱膨張材料及びこの製造方法	松室光昭、出水 敬	
特許	4284451 号	ポリイミド微粒子及びその製造方法	舘 秀樹、浅尾勝哉	
			山元和彦、吉岡弥生	
特許	4284508 号	受圧管一体型圧力センサ	野坂俊紀、筧 芳治	日本リニアックス
特許	4304434 号	ポリアミド微粒子及びその製造方法	吉岡弥生、山元和彦	住友ベークライト
			浅尾勝哉、舘 秀樹	
特許	4331825 号	高強度アルミナ質焼結体の製造方法	宮本大樹、久米秀樹	京セラ、奥村坩堝製造所
			稲村 偉、西川義人	
特許	4395563 号	振動試験方法	中嶋隆勝、津田和城	
			寺岸義春、高田利夫	
特許	4395626 号		広畑 健、橘堂 忠	マイクロシリトロン
11-11-11-11-11-11-11-11-11-11-11-11-11-	100=010 □	成形体の製造方法	b V/エH	~m ~m ~1 nn
	4397016 号		久米秀樹	理研計器
	4418899 号		角谷秀夫	富士製作所 東洋ベンディング
	4418921 号 4419013 号		中嶋隆勝 浅尾勝哉、山元和彦	東洋ペンティンク 住友ベークライト
村町	4419015 万	機能性がサノミト做位士及いての衆垣万伝	吉岡弥生、舘 秀樹	任及ベークライト
性金	4436064 号	サーミスタ用材料及びその製造方法	岡本昭夫	 岡野製作所、小川倉一
17 pT	4400004 /2	9 スペク用材料及びでの表起力伝		美馬宏司
特許	4493902 문	透明導電膜の製造方法	算 芳治	三容真空工業
	4500911 号		赤井智幸、松本 哲	錦城護謨、嘉門雅史
13 11	1000011 .)	ZEMONIA PIATIZZO CANCENTA PERCENCIA	371 G - (A)	地域地盤環境研究所、東洋建設
				東亜建設工業、大林組、奥村組
				不動テトラ、田中、東洋紡
特許	4510967 号	導電性光選択透過シート	小川倉一、吉竹正明	ヒラノ光音
特許	4512750 号	炭素系微細構造物群、炭素系微細構造物の集合体、		科学技術振興機構、大研化学工業
		その利用およびその製造方法		大塚化学、大陽日酸
				日新電機、大阪府立大学
特許	4521644 号	光触媒膜の形成方法	小川倉一、岡本昭夫	シービーシーイングス
			野坂俊紀	シャープ

	発 明・考 案・著作 の 名 称	発明、考案、著作者	共有権者
# **	新		
特許 4579706 号		森河 務、中出卓男 西村 崇	野村鍍金
特許 4593472 号	カーボンナノチューブ分散複合材料の製造方法 並びにその適用物	垣辻 篤	住友精密工業
特許 4593473 号		垣辻 篤	住友精密工業
特許 4605829 号	高強度、高硬度アルミナセラミックス及びその 製造方法	宮本大樹、稲村 偉 久米秀樹、西川義人	京セラ、奥村坩堝製造所
特許 4624233 号	放電加工装置	塚原秀和、南 久 中島陽一、増井清徳	ソディック
特許 4621852 号	ポリイミド多孔体及び微粒子の製造方法	浅尾勝哉、山元和彦 吉岡弥生、舘 秀樹	住友ベークライト
特許 4631013 号	針状酸化チタン微粒子、その製造方法及びその 用途	日置亜也子、木本正樹 汐崎久芳、櫻井芳昭 中尾 聡	
特許 4633000 号	接合体の製造方法	萩野秀樹、平田智丈	大阪産業振興機構、下西製作所
特許 4633101 号	立体形状計測装置および立体形状計測方法	森脇耕介、岩田耕一 福田宏輝	ビジュアツール
特許 4640548 号	摩擦攪拌接合方法及び装置	杉井春夫、谷口正志 大川裕蔵	大阪産業振興機構
特許 4646926 号	球状バナジウム炭化物含有高硬度合金鋳鉄材料 及びその製造方法	橘堂 忠、武村 守 松室光昭、出水 敬 岡本 明、道山泰宏	三共合金鑄造所、岡本
特許 4648915 号	立体形状計測装置および立体形状計測方法	森脇耕介、岩田耕一 福田宏輝	ビジュアツール
特許 4653319 号	ガスセンサ	野坂俊紀、櫻井芳昭 岡本昭夫	エフアイエス
特許 4662699 号	金属皮膜を有するポリマー微粒子及びその製造方法	浅尾勝哉、山元和彦 吉岡弥生、舘 秀樹	住友ベークライト
特許 4669996 号	中性子検出装置及び中性子イメージングセンサ	佐藤和郎、四谷 任	科学技術振興機構、大阪府立大学
特許 4674355 号	原料吹き付け式高効率カーボンナノ構造物製造 方法及び装置		科学技術振興機構、大陽日酸 日新電機、大研化学工業 大阪府立大学
特許 4674321 号	変異原物質吸着材	藤原信明、増井昭彦 井川 聡	
特許 4678496 号	廃棄物処分場の遮水構造	赤井智幸	東洋建設、太陽工業、嘉門雅史
特許 4686742 号	ポリイミド湿潤ゲル及びその製造方法	浅尾勝哉、山元和彦 吉岡弥生、舘 秀樹	
特許 4691625 号	カーボンナノ構造物の高効率合成方法及び装置	野坂俊紀、末金皇	科学技術振興機構、大研化学工業 大塚化学、大陽日酸、日新電機 大阪府立大学
特許 4740528 号	ニッケルーモリブデン合金めっき液とその めっき皮膜及びめっき物品	北村浩司、森河 務 中出卓男、横井昌幸	野村鍍金
特許 4743687 号	機能性ポリアミド微粒子の製造方法	吉岡弥生、浅尾勝哉 山元和彦、舘 秀樹	
特許 4744019 号	チタン金属の表面処理方法	曽根 匠、佐藤幸弘 出水 敬、角谷秀夫	田中、エスディーシー
特許 4776367 号	シート同士の結合方法	赤井智幸	太陽工業、錦城護謨 シーアイ化成、横浜ゴム
特許 4780710 号	コアーシェル型高分子ゲル微粒子及びその製造方法	木本正樹、日置亜也子	
特許 4793791 号	微細パターン複製用金型の作製方法	櫻井芳昭、佐藤和郎 福田宏輝、村上修一 井上陽太郎	
特許 4811552 号	超伝導素子を用いた中性子検出装置	佐藤和郎、四谷 任	科学技術振興機構 通信総合研究所
特許 4817165 号	多孔性ポリイミド膜の製造方法	舘 秀樹、浅尾勝哉 山元和彦、吉岡弥生	

	発 明・考 案・著作 の 名 称	発明、考案、著作者	共有権者
特許 4827056 号	振動試験方法及び装置、並びに振動試験用プロ		IMV
	グラム		
特許 4854205 号	摩擦攪拌装置、そのプローブの制御方法、制御 プログラム及び接合体の製造方法	杉井春夫	(財)大阪産業振興機構
特許 4854586 号	光学素子のプレス成形シミュレーション方法	木下俊行	相澤龍彦、三津江金型
	及びプログラム		
特許 4900619 号	微細炭素繊維撚糸を連続的に製造する方法、及 び装置	喜多幸司、西村正樹 赤井智幸	東洋紡
特許 4905702 号	触媒構造体およびこれを用いたカーボンナノ 構造体の製造方法	水越朋之	住友電気工業
特許 4919357 号	電子デバイスの製造方法	岡本昭夫	
特許 4935214 号		田原 充	大阪府立大学、パール工業
特許 4958102 号		第 芳治、岡本明夫	
		松永 崇、日下忠興 吉竹正明	
特許 4958138 号	カーボンナノコイル用製造用触媒	野坂俊紀、末金 皇	大陽日酸、大塚化学 大阪府立大学
特許 4962964 号	ガラスレンズ用成形型及びその製造方法	三浦健一	ミツエ・モールド・エンジニア
	· · · · · · · · · · · · · · · · · · ·		リング
特許 4963561 号	触媒及びその製造方法	岡本昭夫、松本茂生 野坂俊紀	
特許 4968854 号	カーボンナノチューブ集合体、カーボンナノ	喜多幸司、西村正樹	東洋紡、大阪府立大学
	チューブ繊維及びカーボンナノチューブ繊維 の製造方法	赤井智幸	
特許 4974584 号		赤井智幸、西村正樹	東洋建設、東亜建設工業
	方法	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	五洋建設、大林組、奥村組
			不動テトラ、太陽工業、錦城護謨
			シーアイ化成、横浜ゴム
			(財)地域地盤環境研究所
			嘉門雅史
特許 4979266 号	保護板の連結方法	赤井智幸	東洋建設、東亜建設工業
			五洋建設、大林組、奥村組
			不動テトラ、太陽工業、錦城護謨
			シーアイ化成、横浜ゴム
			(財)地域地盤環境研究所
特許 4994860 号	多孔質成型体およびその製造方法ならびに	广加 梅	嘉門雅史 日本バルカー工業、未来電池
村計 4994000 万	多れ員成室体やよいその製造が伝体的いた その用途	広畑 健 	日本バルカー工業、木木电池
特許 4999345 号	ポリアミド絡合体及びその製造方法	吉岡弥生、浅尾勝哉	住友ベークライト
		山元和彦、舘 秀樹	
特許 '5055528 号		中嶋隆勝	全国農業協同組合連合会
特許 5105375 号	転倒防止装置およびこれを備えた自動販売機	中嶋隆勝	東洋ベンディング
特許 5103598 号	機能性ポリイミド微粒子の製造方法	浅尾勝哉、山元和彦	住友ベークライト
# <u>+</u> =#	京劫 仁道佐入社郎	吉岡弥生、舘 秀樹	分去集成工 类
特許 5116082 号 特許 5147439 号	高熱伝導複合材料 廃棄物被覆用のキャッピングシート	垣辻 篤 西村正樹、赤井智幸	住友精密工業 東洋紡
特許 5177425 号	電磁波吸収装置及び吸収電磁波制御方法	田中健一郎、野坂俊紀	
特許 5229934 号	高熱伝導性複合材料	垣辻 篤	住友精密工業
特許 5229732 号	微細炭素繊維撚糸の製造装置及び製造方法	喜多幸司、西村正樹	東洋紡
13 H 1 9 2 2 3 1 9 2 7		赤井智幸	ノトリナルジ
アメリカ 5466305 号	Method of Treating The Surfacs of Titanium		田中
	J ====================================	曽根 匠	
アメリカ 5518678 号	Adsorptive Honeycomb-shaped Ceramic	宮本大樹	カワタ
	Structure and Method for Its Production		
アメリカ 6187899 号	Polyamic Acid and Polyimide Microfine	浅尾勝哉	住友ベークライト
	Particles and Process for Their Production		
アメリカ 6335418 号	Functional Polyamic Acid Microfine Particles,		住友ベークライト
	Functional Polyimide Microfine Particles,	大西均、木本正樹	
-	and Processes for Their Production	吉岡弥生	

	発 明・考 案・著作 の 名 称	発明、考案、著作者	共有権者
アメリカ 6333392 号	Thermosetting Amic Acid Microfine Particles,	浅尾勝哉	住友ベークライト
	Thermosetting Imide, Microfine Particles,		
	Crosslinked Imide Microfine Particles, and		
	Processes for Their Production		
アメリカ 6501056 号	Carbon Heating Element and Method of	広畑 健、高橋弓弦	イーアンドイーテクノロジー
	Manufacturing The Same		
中国 99103698 号	Polyamic Acid and Polyimide Microfine	浅尾勝哉	住友ベークライト
	Paticles and For Their Production		
韓国 0394981 号	Carbon Heating Element and Method of	広畑 健、高橋弓弦	イーアンドイーテクノロジー
	Manufacturing		
中国 00107511 号	Thermosetting Amic Acid Microfine Particles,	浅尾勝哉	住友ベークライト
	Thermosetting Imide, Microfine Particles,		
	Crosslinked Imide Microfine Particles, and		
	Processes for Their Production		
ドイツ 0982343 号	Polyamic Acid and Polyimide Microfine	浅尾勝哉	住友ベークライト
	Paticles and For Their Production		
フランス 0982343 号	Polyamic Acid and Polyimide Microfine	浅尾勝哉	住友ベークライト
	Paticles and For Their Production		
作"リス 0982343 号	Polyamic Acid and Polyimide Microfine	浅尾勝哉	住友ベークライト
	Paticles and For Their Production		
ドイツ 1152021 号	Process for The Production of Thermosetting	浅尾勝哉	住友ベークライト
	Microfine Polyamic Acid, Polyimide or		
	Crosslinked Polyimide Particles		
フランス 1152021 号	Process for The Production of Thermosetting	浅尾勝哉	住友ベークライト
	Microfine Polyamic Acid, Polyimide or		
	Crosslinked Polyimide Particles		
作"リス 1152021 号	Process for The Production of Thermosetting	浅尾勝哉	住友ベークライト
	Microfine Polyamic Acid, Polyimide or		
	Crosslinked Polyimide Particles		
中国00123653.9号	Functional Polyamic Acid MicrofineParticles,	浅尾勝哉、森田 均	住友ベークライト
	Functional Polyimide Microfine Particles,	大西 均、木本正樹	
	And Processes For Their Production	吉岡弥生	
アメリカ 6908589 号	High Manganese Cast Iron Containing Spheroidal	橘堂 忠、武村 守	三共合金鑄造所、岡本
	Vanadium Carbide and Method for Making	松室光昭	
	Thereof		
台湾 I 276409 号	温風加熱器	広畑 健	万雄
アメリカ 7287930 号	車両用衝突緩衝装置	中嶋隆勝	エヌケイシー、平岡金属工業
アメリカ 7291229 号	チタン金属の表面処理方法	曽根 匠、佐藤幸弘	田中、SDC田中
		出水 敬、角谷秀夫	
台湾 I 293062 号	炭素系微細構造物群、炭素系微細構造物の集合体、	末金 皇、野坂俊紀	科学技術振興機構、大塚化学、
	その利用およびその製造方法		大陽日酸、日新電機
			大阪府立大学
中国	非加熱硬化型バインダー及びそれを用いた	広畑 健、橘堂 忠	未来電池
200380100904.1	成形体の製造方法		
号			
ロシア 2324706 号	非加熱硬化型バインダー及びそれを用いた	広畑 健、橘堂 忠	未来電池
	成形体の製造方法		
ト゛イツ	Functional Polyamic Acid Microfine	浅尾勝哉、森田 均	住友ベークライト
60038609.0-08 号	Particles, Functional Polyimide Microfine	大西 均、木本正樹	
	Particles, And Processes For Their Production	吉岡弥生	
フランス 1182229 号	Functional Polyamic Acid Microfine	浅尾勝哉、森田 均	住友ベークライト
	Particles, Functional Polyimide Microfine	大西 均、木本正樹	
	Particles, And Processes For Their Production	吉岡弥生	
韓国10-0879392 号	炭素系微細構造物群、炭素系微細構造物の集合体、	末金 皇、野坂俊紀	科学技術振興機構、大塚化学
	その利用およびその製造方法		大陽日酸、日新電機
			大阪府立大学

	w 田 女 安 女 b の 々 か	発明、考案、著作者	北大长 老
	発明・考案・著作の名称		共有権者
中国	車両用衝突緩衝装置	中嶋隆勝	エヌケイシー、平岡金属工業
200480000521 号	フニンルフが広島化幅体外社図	接选 由 李县 左	
	ステンレス球状炭化物鋳鉄材料	橘堂 忠、武村 守 松室光昭	三共合金鑄造所、川野豊 西内滋典、山本悟
<u>号</u>	以日 园 知 勃 叩	·	
中国	温風加熱器	広畑 健	万雄
200580001676. 1 号			
アメリカ 7896061 号	耐亜鉛侵食性が改善された物品	森河 務、中出卓男 西村 崇	野村鍍金
台湾 I 343438 号	車両用衝突緩衝装置	中嶋隆勝	エヌケイシー、平岡金属工業
オーストラリア	耐亜鉛侵食性が改善された物品	森河 務、中出卓男	野村鍍金
2006211677 号		西村 崇	
アメリカ 8053069 号	高熱伝導複合材料	垣辻 篤	住友精密工業
アメリカ 8163060 号	高熱伝導性複合材料	垣辻 篤	住友精密工業
中国	高熱伝導性複合材料	垣辻 篤	住友精密工業
200880022911 号			
中国	高熱伝導性複合材料	垣辻 篤	住友精密工業
200880017447 号			
中国	炭素系微細構造物群、炭素系微細構造物の集合体、	末金 皇、野坂俊紀	科学技術振興機構、大塚化学
200580011596 号	その利用およびその製造方法		大陽日酸、日新電機
			大阪府立大学
意匠 1171152 号		中嶋隆勝	エヌケイシー、宏和工業
プログラム	打球の軌道・飛距離推定プログラム及び抗力係数	中嶋隆勝	
	・揚力係数同定プログラム		
プログラム	めっき加工業向 PostgreSQL データベース連携 生産管理システム	新田 仁、竹田裕紀	
プログラム	農作物トレーサビリティ支援システム	竹田裕紀、新田 仁	
プログラム	タンク容量計算システム	藤原久一、宮内修平	
プログラム	格子投影画像から三次元情報を計算するコン	森脇耕介	
	ピュータプログラム		
プログラム	金属加工業に於ける汎用型生産管理システム	竹田裕紀、新田 仁	
プログラム	統合型農作物栽培管理システム	竹田裕紀、新田 仁	
プログラム	メタン発酵ガスのメタンガス濃縮システムの	大山将央	
	計算プログラム		
プログラム	鋳造業における汎用型生産管理システム	竹田裕紀、新田 仁	
プログラム	計算機ホログラムの数値設計を行うコンピュ	森脇耕介、佐藤和郎	
	ータプログラム		
プログラム	鍍金加工業向け生産管理システム	新田 仁、竹田裕紀	
プログラム	画像に基づき微細回折格子配列を設計するコ	森脇耕介、佐藤和郎	
	ンピュータプログラム	村上修一	
プログラム	回折格子の光学設計を行うコンピュータプロ	山東悠介、金岡祐介	
	グラム	村上修一、佐藤和郎	
ノウハウ	撚糸製造に関するノウハウ	喜多幸司、西村正樹	
		赤井智幸	

付2. 出願中産業財産権一覧表〔特許 74件 (うち外国特許 11件)〕

 出 願 番 号	発 明・考 案 の 名 称	出願年月日	発明、考案者	共願者
特願 2004- 233566	樹脂組成物および水性電着塗料	16. 8. 10	浅尾勝哉、山元和彦 吉岡弥生、舘 秀樹	シミズ
特願 2005-317992	機能性ポリアミド酸複合粒子及び 機能性ポリイミド複合粒子の製造 方法	17.11. 1	浅尾勝哉、山元和彦 吉岡弥生、舘 秀樹	住友ベークライト
特願 2006-078536	ポリアミド複合粒子、ポリアミド 酸複合粒子及びポリイミド複合粒 子並びにこれらの製造方法	18. 3. 22	浅尾勝哉、山元和彦 吉岡弥生、舘 秀樹	住友ベークライト
特願 2007-526827 (PCT/JP2006/305738)	高熱伝導複合材料とその製造方法	18. 3.22	垣辻 篤	住友精密工業
特願 2008-522574 (PCT/JP2007/62733)	制振用樹脂材料、成形品、制振用硬 化性樹脂組成物およびプリプレグ	19. 6.25	野坂俊紀	サカイオーベックス 大阪府立大学 大阪市工研
特願 2007-228403	電磁波吸収シート	19. 9. 3	田中健一郎、野坂俊紀	大阪府立大学、日新電機
特願 2007-274613	微細炭素繊維糸の製造方法、該製造方法に用いる微細炭素繊維形成基板、及び、前記製造方法によって製造された微細炭素繊維糸	19. 10. 23	喜多幸司、西村正樹 赤井智幸	大阪府立大学東洋紡
特願 2007-286958	微粒子シリカ被覆板状粉体および それを含有する化粧料	19.11. 5	木本正樹、日置亜也子	大東化成工業
特願 2008-008300	表面被覆樹脂基体、その製造方法 及びその製造装置	20. 1.17	田原 充	大阪府立大学 パール工業
特願 2008-027109	キャッピングシートの敷設方法 およびその方法に用いられるキ ャッピングシート	20. 2. 7	西村正樹、赤井智幸	ユニチカ、田中 太陽工業 トーア紡マテリアル
特願 2008-030211	球状ポリマー微粒子被覆板状粉体 およびそれを含有する化粧料	20. 2.12	木本正樹、日置亜也子	大東化成工業
特願 2008-219892	歯科用診療装置及び歯科用流体管路 殺菌装置	20. 8.28	井川 聡	吉田製作所、大阪大学
特願 2009-533198	カーボンナノ構造物成長用触媒層 形成方法、触媒層形成用液及びカ ーボンナノ構造物製造方法	20. 9. 19	渡辺義人	大阪府立大学 大陽日酸
特願 2008-272100	触媒基材およびこれを用いたカー ボンナノ構造体の製造方法	20. 10. 22	水越朋之	住友電気工業
特願 2008-276590	超砥粒ホイールおよび超砥粒ホイールの放電ツルーイング方法またはツルーイング・ドレッシング方法	20. 10. 28	渡邊幸司、南 久	アライドマテリアル
特願 2008-277793	ガス精製方法及びガス精製装置	20. 10. 29	大山将央、井本泰造 岩崎和弥、宮内修平	モリプラント
特願 2008-293262	フォトレジスト組成物	20. 11. 17	櫻井芳昭	三宝化学研究所
特願 2009-051414	N i 基 2 重複相金属間化合物合金 からなる摩擦攪拌加工用ツール及 び摩擦攪拌加工方法	21. 3. 5	平田智丈	大阪府立大学 アイセル
特願 2009-051940	振動生成方法および振動生成装置	21. 3. 5	細山 亮、中嶋隆勝	
特願 2009-75993	貯留水場、およびその形成方法	21. 3. 26	西村正樹、赤井智幸	東洋建設、東亜建設工業 五洋建設、大林組、奥村組 鴻池組、不動テトラ、太 陽工業、錦城護謨 シーアイ化成、東洋紡 地域地盤環境研究所 嘉門雅史
特願 2009-84995	高熱伝導性複合材料及びその製造 方法	21. 3.31	垣辻 篤	住友精密工業
特願 2009-85011	高熱伝導性複合材料及びその製造 方法	21. 3.31	垣辻 篤	住友精密工業

出 願 番 号	発 明・考 案 の 名 称	出願年月日		共願者
特願 2010-520900 (PCT/JT2009/62937)	歯科用診療装置及び歯科用プラズマ ジェット照射装置	21. 7. 17	井川 聡	吉田製作所、大阪大学
特願 2010-016491	カーボンナノチューブ撚糸および その製造方法	22. 1.28	喜多幸司、西村正樹 赤井智幸	東洋紡
特願 2010-068078	摩擦加工用ツール、これを用いた 摩擦加工装置及び摩擦加工方法	22. 3.24	平田智丈	大阪府立大学 近畿大学、アイセル
特願 2010-068083	摩擦攪拌加工装置及び摩擦攪拌加工 方法	22. 3.24	平田智丈	大阪府立大学 近畿大学、アイセル
特願 2010-075759	カーボンナノチューブ撚糸および その製造方法	22. 3.29	喜多幸司、西村正樹 赤井智幸	日新電機
特願 2010-075773	カーボンナノチューブ集合体、その製造方法及びカーボンナノチュ ーブ撚糸	22. 3.29	喜多幸司、西村正樹 赤井智幸	日新電機
特願 2010-079136	ロープ状炭素構造物製造用配向カ ーボンナノチューブ、ロープ状炭 素構造物及びその製法	22. 3.30	渡辺義人	大陽日酸 大阪府立大学
特願 2010-081891	カーボンナノ構造物の製造装置お よび製造方法	22. 3.31	野阪俊紀	大阪府立大学
特願 2010-114140	炭素繊維配向シート製造方法	22. 5. 18	垣辻 篤	住友精密工業 北海道大学
特願 2010-121274	キャツピングシートの接合方法 及び接合構造	22. 5. 27	西村正樹、赤井智幸	嘉門雅史、太陽工業 ユニチカ、東洋紡 錦城護謨㈱ ダイワボウプログレス 田中、大林組、鴻池組 浅沼組、奥村組
特願 2010-141561	加熱具及びその製造方法	22. 6.22	萩野秀樹、山口拓人	河内温度、岡野鈑金工業 真上電子
特願 2010-214950	衝撃強さ評価装置、方法および プログラム	22. 9.27	中嶋隆勝	神栄テクノロジー
特願 2010-279577	野球又はソフトボール用プロテク ターの緩衝構造	22. 12. 15	細山 亮	ゼット
特願 2011-029173	ナノカーボン分散ポリイミド溶液 及びこれを用いて製造される複合 材料	23. 2.14	浅尾勝哉、吉岡弥生	イノアック技術研究所
特願 2011-072979	歪抵抗薄膜および当該歪抵抗薄膜 を用いたセンサ	23. 3.29	第 芳治、岡本昭夫 佐藤和郎、松永 崇	日本リニアックス
特願 2011-072459	摩擦攪拌加工装置及び摩擦攪拌 加工方法	23. 3.29	平田智丈	大阪府立大学 近畿大学、アイセル
特願 2011-079158	金属ガラス成形体の製造方法	23. 3.31	中本貴之、白川信彦 四宮徳章	
特願 2011-085772	マイクロ圧力センサ	23. 3.23	岡本昭夫	岡野製作所、小川倉一 美馬宏司
特願 2011-085773	真空環境計測制御システム	23. 3.23	岡本昭夫	岡野製作所、小川倉一 美馬宏司
特願 2011-101189	表面改質フッ素樹脂フィルム、その製造方法、その製造装置、表面 改質フッ素樹脂を含む複合体及び その製造方法	23. 4.28	陰地威史、田原 充	大阪府立大学住友ゴム工業
特願 2011-171136	有機トランジスタ及びその製造方法	23. 8. 4	宇野真由美	大阪大学
特願 2011-193000	低抵抗金属固定抵抗器の製造方法	23. 9. 5	平田智丈、田中 努 森重大樹	特殊金属エクセル
特願 2011-213504	湿式触媒を用いた配向CNT製造 方法及び配向CNT	23. 9.28	渡辺義人	大陽日酸 大阪府立大学
特願 2011-225752	非ガウス特性振動制御装置	23. 10. 13	細山 亮	IMV
特願 2011-229763	ニッケル基金属間化合物焼結体 およびその製造方法	23. 10. 19	垣辻 篤	大阪府立大学 冨士ダイス

 出 願 番 号	発明・考案の名称	出願年月日	発明、考案者	共願者
特願 2011-233209	触媒構造体およびこれを用いた	23. 10. 24	水越朋之	住友電気工業
	カーボンナノ構造体の製造方法			
特願 2011-264551	歪抵抗素子およびそれを用いた	23.12. 2	武村 守	アサヒ電子研究所、日本
-	歪検出装置			リニアックス、小川倉一
特願 2011-273901	CMPパッドコンディショナおよび	23. 12. 14	森河 務、中出卓男	帝国イオン、D. N. A. メ
	当該 CMP パッドコンディショナの			タル、三菱マテリアル
	製造方法			ノリタケカンパニーリ
性區 0011 002111	コノカロ推進の制造士法	23. 12. 26	#######################################	ミテド、おじま
特願 2011-283111	マイクロ構造体の製造方法	24. 1.13	櫻井芳昭、山村昌大	山陽色素、ハニー化成
特願 2012-005478	施肥器		北川貴弘	2 社 1 社
特願 2012-027505	三次元構造を有する薄膜トランジ スタ及びその製造方法	24. 2. 10	宇野真由美	
特願 2012-040987	レーザクラッディング方法及び	24. 2.28	萩野秀樹、山口拓人	1 社
of Express	工具材		中本貴之	
特願 2012-053870	接合体の製造方法及び製造装置	24. 3. 9	平田智丈、田中 努	1 社
特願 2012-069200	遮水材	24. 3.26	森重大樹 赤井智幸	3 社
特願 2012-531631	水素発生用電極の製造方法及び	22. 9. 2	中出卓男、森河 務	3 71
(PCT/JP2010/65055)	水素発生用電極	22. 3. 2	横井昌幸	
特願 2012-099680	ダイヤモンド工具の製造方法	24. 4.25	本田索郎	2 社
特願 2012-103800	殺菌処理方法および殺菌用結氷体	24. 4. 27	井川 聡	1社
, , , ,	の生成方法および装置、並びに殺			
	菌用液体の生成方法			
特願 2012-118055	焼結ダイヤモンドの放電加工方法	24. 5. 23	南 久、渡邊幸司	1 社
PCT/JP2012/68219	有機トランジスタ及びその製造方法	24. 7.18	宇野真由美	1社
PCT/JP2012/68297	カーボンナノチューブ撚糸および	24. 7.18	喜多幸司、西村正樹	1 社
41	その製造方法		赤井智幸	
特願 2012-203189	ラック用制振装置	24. 9. 14	中嶋隆勝、津田和城	1 社
特願 2013-040993	Ni 基金属間化合物焼結体および その製造方法	25. 3. 1	垣辻 篤	1 社
特願 2013-059213	カーボンナノコイル生成用触媒の	25. 3. 22	長谷川泰則、野坂俊紀	1 社
	製造方法およびこのカーボンナノ			
	コイル生成用触媒を用いて生成されるカーボンナノコイル			
アメリカ 11/578782	炭素系微細構造物群、炭素系微細	17 / 10	末金皇、野坂俊紀	科学技術振興機構
(PCT/JP2005/007480)	構造物の集合体、その利用および	17. 4.15	八亚 主、月次区心	大塚化学、大陽日酸
(101/312000/001100)	その製造方法			日新電機、大阪府立大学
э-pッハ° 05734218.0	炭素系微細構造物群、炭素系微細	17. 4. 19	末金 皇、野坂俊紀	科学技術振興機構
(PCT/JP2005/007480)	構造物の集合体、その利用および			大塚化学、大陽日酸
	その製造方法			日新電機、大阪府立大学
ኑ ገን 112006000290. 2	耐亜鉛侵食性が改善された物品	18. 2. 1	森河 務、中出卓男	野村鍍金
(PCT/JP2006/302113)			西村 崇	
欧州 08721458.1	高熱伝導複合材料	20. 3. 6	垣辻 篤	住友精密工業
(PCT/JP2008/54038)		22 2 2	I hote	12. 4. yet et 2014
韓国 10-2009-7021606	高熱伝導複合材料	20. 3. 6	垣辻 篤	住友精密工業
(PCT/JP2008/54038) 欧州 08777759.5	高熱伝導性複合材料	20. 7. 2	垣辻 篤	住友精密工業
(PCT/JP2008/61956)	间然四等正後日的科	20. 1. 2	型儿 病	正久相位上未
韓国 10-2010-7002099	高熱伝導性複合材料	20. 7. 2	垣辻 篤	住友精密工業
(PCT/JP2008/61956)	THE TAIL TO THE TAIL		X- MV	三人11日二人
アメリカ 13/054386	歯科用診療装置及び歯科用プラズマ	21. 7.17	井川 聡	吉田製作所、大阪大学
(PCT/JT2009/62937)	ジェット照射装置			
欧州 09797986.8	歯科用診療装置及び歯科用プラズマ	21. 7.17	井川 聡	吉田製作所、大阪大学
(PCT/JT2009/62937)	ジェット照射装置			

9. 業務運営

(1) 理事会

法人役員及び監事で構成する理事会を設置し、中期計画・年度計画その他の知事認可事項、予算・決算など、重要事項について審議し、決定した。

開催	日時	議題
第1回	24. 4. 2	各種規程、平成24年度予算等
第2回	24. 7.26	会計監査スケジュール 等
第3回	24. 11. 6	会計監査結果、大阪府地方独立行政法人評価委員会議案等
第4回	25. 1.31	新規プロジェクト計画、平成 25 年度予算重点項目、平成 25 事業年度の年度計画 等
第5回	25. 3.28	事業進捗状況、平成 25 事業年度の年度計画 等

(2) 経営会議

法人幹部で構成し、大阪府商工労働部幹部がオブザーバーとして出席する経営会議を設置し、法人運営における 重要事項について審議し、決定した。

・開催日時:毎月1回(原則として第3水曜日)

・主な内容:経営の方針に関する事項、研究・特許・機器整備に関する事項 理事会の議案に関する事項、その他法人の経営戦略に関する事項

(3)業務運営会議

法人幹部で構成する業務運営会議を設置し、研究・支援業務等のマネジメントや報告、理事会や経営会議等で決定した重要事項の各課・科・所への伝達等を実施した。

・開催日時:毎月2回(原則として第1及び第3水曜日)

・主な内容:研究・支援業務等の進捗に関する事項、業務課題に関する事項、

その他法人の業務運営に関する事項

(4) 大阪府地方独立行政法人評価委員会

地方独立行政法人法の規定に基づき、産技研は平成 25 年度に大阪府地方独立行政法人評価委員会(以下、「評価委員会」)から、業務の実績に関する評価を受ける必要があることから、そのための準備として、平成 24 年度は「年度評価の考え方」及び「業務実績に関する報告書」の様式について評価委員会で審議され、決定された。

また、大阪府市統合本部会議(以下、「統合本部会議」)において、産技研と市工研が平成27年度を目途に統合する方針が決定されたことを受け、大阪府が産技研に指示する中期目標が変更された。そのために、産技研としても中期計画を変更する必要が生じたことから、中期計画の変更案について評価委員会に諮ったところ、「特に意見なし」と決定された。

(5) 大阪市立工業研究所との統合に向けた動き

平成24年6月に開催された第13回大阪府市統合本部会議において、次のとおり方向性が決定された。

- 産技研と市工研は、法人統合により、両研究所の強みと総合力を活かし、工業技術とものづくりを支える知と技術 の支援拠点「スーパー公設試」を目指す。
- 法人統合に先行して、経営戦略の一体化と業務プロセスの共通化等を行い、機能面の実質的な統合と事業の効率化 を図る。

さらに、第14回大阪府市統合本部会議において、法人統合に先行して経営戦略の一体化を図るため、両法人が「合同経営戦略会議」を設置することが決定された。

この決定を受け、両法人は両法人理事長、府市の幹部及び民間有識者で構成する合同経営戦略会議を設置し、法人統

合に向けた準備を進めている。

開催	日時	議題
第1回	24. 11. 15	会議の進め方、今後の公設試が求められる役割等
第2回	25. 3.26	「スーパー公設試」としてあるべき姿、統合に先行した取組 等

なお、委員は次のとおりである。

役 職	氏 名 職業等		
議長	古寺 雅晴	地方独立行政法人大阪府立産業技術総合研究所 理事長	
副議長	中許 昌美	地方独立行政法人大阪市立工業研究所 理事長	
委 員	安達 稔	クラスターテクノロジー株式会社 代表取締役社長	
委 員	後藤 芳一	東京大学大学院 教授(工学系研究科マテリアル工学専攻)	
委 員	笠原 哲	大阪府商工労働部長	
委 員	魚井優	大阪市経済局長	

10.参考

(1)収入・支出

収 入

(単位:百万円)

区分	予 算 額	決算額	差 額 (決算-予算)	備考
運営費交付金	1, 920	1,885	-35	
自己収入	363	454	91	
事業収入	260	279	19	
外部資金研究費等	43	58	15	
その他収入	60	117	57	
計	2, 283	2, 339	56	

支 出

(単位:百万円)

区分	予算額	決算額	差 額 (決算-予算)	備 考
業務費	1, 837	1, 789	-48	
技術研究経費	643	674	31	
外部資金研究費等	32	42	10	
職員人件費	1, 162	1,073	-89	
施設整備費	89	47	-42	
一般管理費	357	334	-23	
計	2, 283	2, 170	-113	

(2)設 備

(A) 主要新設機器

機器名称	メーカー名	型式
電子線三次元表面形態解析装置(注1)	株式会社エリオニクス	フィールドエミッション電子線三次元粗さ
		解析装置
		(ERA-8900FE) EDS/EBSD インテグレーションシステム
ボンベ熱量計	イカジャパン株式会社	C5000
全自動マイクロビッカース硬さ試験機システム	ザイシ工業株式会社	HM-220D
ニオイ分析総合システム	株式会社島津製作所	ガスクロマトグラフ質量分析計
		GSMS QP2010Ultra
		におい識別装置 FF-2020
走查電子顕微鏡	日本電子株式会社	JSM-6610
炭素硫黄分析装置	米国LECO社	CS844型
金属プレス加工CAEシステム	株式会社JSOL	JSTAMP/NV
大型配光特性測定装置	PIMACS	NeoLight 9500 OSP
薄膜用スクラッチ試験機	レスカ	CSR-2000
スクラッチ試験装置	NANOUEA	マクロスクラッチテスター
金属粉末積層造形装置(注2)	株式会社NTTデータエンジニア	EOSINT-M280
	リングシステムズ	
プラスチック粉末積層造形装置(注2)	株式会社NTTデータエンジニア	FORMIGA-P110
	リングシステムズ	
雰囲気制御炉	富士電波工業株式会社	抵抗加熱式加圧燒成炉
		FVPS-R-100/120 FRET-18
ガス循環精製機付パージ式グローブボックス	株式会社美和製作所	DBO-1PK-OFSGK

- (注1) (財) JKA 平成24年度公設工業試験研究所の設備拡充補助事業
- (注2) 平成24年度地域企業立地促進等共用施設整備費補助金

(B) 主要設備機器

分析機器

機 器 名 称	メーカー名	型式
ICP-質量分析システム	サーモエレクトロン(株)他	X-7、他
ICP発光分光分析装置	エスアイアイナノテクノロジー	SPS3520UV, iCAP6300Duo
	サーモフィッシャー	
	サイエンティフィック	
X線回折装置	リガク	SmartLab
X線光電子分光分析装置	アルバックファイ(株)	PHI QuanteraCV
X線光電子分光分析装置	アルバックファイ(株)	5600C
X線分析顕微鏡	㈱堀場製作所	XGT-5200WR
イオンクロマト分析装置	日本ダイオネクス(株)	DX-300
イオンクロマト分析装置	日本ダイオネクス(株)	DX-320 EG-40 付き
エネルギー分散型X線分析装置	日本電子傑	JED-2110
エネルギー分散型微小部蛍光X線分析装置	エダックス・ジャパン(株)	EAGLEµ-Probe P システム
ガス分析装置	㈱堀場製作所	MPA-510、VIA-510、CLA-510SS、他
キャピラリー電気泳動分析装置	金陵電気㈱	G1602A
グロー放電発光分析装置	理学電機工業㈱	System3860型
ゲル浸透クロマトグラフ	旭テクネイオン	Tri SEC-Model302W型
パームポロメーター	Porous Materials, Inc	CFP-1200AEX-c-P型
フーリエ変換赤外分光光度計	アジレント・テクノロジー	Agilent660/620 FastImage IR
フーリエ変換赤外分光光度計	株パーキンエルマー	Spectrum One OY-II , MultiScope YT-I
フーリエ変換赤外分光光度計	サーモニコレー	Avatar360
プラズマ分析装置	㈱ユニソク	USP-410型
フリーラジカルモニタ	日本電子(株)	JES-FR30
フローインジェクション分析装置	ティーケータ	エンバイロフロー5012型
ヘッドスペース型ガスクロマトグラフ質量分析計	サーモフィッシャー	TRACE DSQ II
レーザイオン化飛行時間型質量分析装置	㈱島津製作所	KOMPACT MALDI2

機器名称	メーカー名	型式
核磁気共鳴装置	日本電子(株)	JNM-A300
金属中酸素・窒素・アルゴン同時分析装置	米国LECO	TC-436AR
蛍光X線分析装置	㈱島津製作所	EDX-800HS 他
蛍光X線分析装置	セイコーインスツルメンツ(株)	SEA5120型
顕微ラマン分光光度計	日本分光	NRS-3300
固体高分子型燃料電池評価装置	㈱レスカ	FS-001
光電測光式発光分析装置	㈱島津製作所	PDA-7000(鉄鋼系),PDA-7000(非鉄系)
高速液体クロマトグラフ	㈱島津製作所	LC-9A
紫外・可視分光光度計	㈱島津製作所	UV-3100PC
自動ガス/蒸気吸着量測定装置	日本ベル(株)	BELSORP18PLUS-SP
質量分析計	日本電子(株)	JMS-SX102A
触媒・吸着特性評価装置	㈱島津製作所、ガスバックジャパン	悪臭ガス試験装置、QP-5000
炭素硫黄同時分析装置	米国LECO	CS-444LS
電界放射型X線マイクロアナリシス	日本電子(株)	JXA-8530F,IB-09010CP
熱天秤システム		カーン真空自記式天秤 1000 型
熱特性解析システム	セイコー電子工業㈱	EXSTAR6000
熱分解総合分析装置	日本電子(株)	
熱分析システム	セイコーインスツルメンツ(株)	DSC6220, TG/DTA6300, TMA/SS6100,
		DMS6100
熱分析装置(高温熱分析システム)	㈱マック・サイエンス	TG-DTA2200·TD5020S·TD5200·
		TAPS1000S
熱分析装置(低・中温熱分析システム)	セイコー電子工業体	TG/DTA320·DSC220C·
		SC320TMA/SS150、他 1 件
波長分散型蛍光X線分析装置	リガク	ZSXPrimus II
分取液体クロマト装置	東ソ一(株)	CCPP-M他
有機微量元素分析装置	パーキンエルマー	2400CHNS/O

形状測定機器

機 器 名 称	メーカー名	型 式
三次元形状計測装置	㈱エヌ・ケー・エクサ	3DI-H-1100-S/R
三次元形状測定装置	(株)ミツトヨ	特 QV606-PRO
蒸着薄膜膜厚測定装置	KLA-Tencer	プロファイラー P-16+ 他
触針式表面粗さ計	英国ランクテーラーホブソン	S5 フォームタリサーフシリーズ
測長機	カールツアイス(株)	JENA
測長機	カールツァイス(株)	MUL-1000
超精密自由曲面形状測定システム	松下電器産業㈱	UA3P-5
白色干涉型三次元表面形状解析装置	キャノン	New View 100
薄膜表面スキャン・プロファイラー	ケーエルエー・テンコール(株)	P-15型
非接触三次元摩耗形態測定機	(株)ミツトヨ	SSV-9274.3D
非接触微小変位計	日本エーディーイー(株)	3401HR
摩耗形態測定機	(株)ミツトヨ	SV-3000S CNC/Y

顕微鏡

機 器 名 称	メ ー カ ー 名	型式
ウルトラミクロトーム	Leica	ULTRACUT S
球面収差補正機能付走査透過電子顕微鏡システム	(株)日立ハイテクノロジーズ	HD-2700, FB2200
共焦点顕微鏡	レーザーテック(株)	HD100D-T
元素分析機能付き走査電子顕微鏡	日立ハイテクノロジーズ	走査電子顕微鏡 S-3400N
元素分析付高分解能電界放出型走查電子顕微鏡	日立ハイテクノロジーズ	S4800 システム、GenesisXM2 システム
	エダックスジャパン	
高精度デジタルマイクロスコープ	㈱キーエンス	VH-7000
走査型プローブ顕微鏡	セイコーインスツルメンツ(株)	SPI3800N(表面物性評価機能付き)
走査型プローブ顕微鏡システム	デジタルインスルメンツ	Nanoscope 3a 他
走查型電子顕微鏡	日本電子(株)	JSM-5500G
走查型電子顕微鏡	日本電子(株)	JSM T-200
走查型電子顕微鏡(高分解能型)	日本電子(株)	JSM-6301F
走查型電子顕微鏡(低真空型)	(株)ニコン	ESEM-2700
走查顕微鏡	日本電子(株)	JSM-5200LV
万能倒立金属顕微鏡	カールツァイス(株)	Axiovert 100A

材料強度試験機

材料強度試験機		
機器名称	メ ー カ ー 名	型式
X線応力測定装置	リガク	AutoMATE
高速引張り試験機	㈱島津製作所	HITS-T10-S
1トン材料試験機	㈱島津製作所	AG-20kN GMODELM1
10トン材料試験機	米国インストロン	5583型
10トン疲労試験機	米国インストロン	8501型
10トン油圧式万能材料試験機	㈱島津製作所	UH-100
1トン材料試験機	㈱島津製作所	AG-10KNGMODELM2
3トン材料試験機	米国インストロン	5567型
500kN材料試験機	㈱島津製作所	万能試験機 UH-500KNI
50トン材料試験機	㈱島津製作所	UH-500kNC
5 k N万能試験機	㈱島津製作所	AG-20KNGMODEL M2 他
インストロン材料試験機	米国インストロン	4482
インストロン万能材料試験機	米国インストロン	4206
ジオシンセティックス摩擦特性評価装置	㈱丸東製作所	SI-49S
シャルピー衝撃試験機	㈱米倉製作所	50C(PU50)
ダイナミック超微小硬さ計	㈱島津製作所	DUH201S
ねじ締付け試験機	日本計測システム	1000⋅m-200kN
ねじ締付け試験機	日本計測システム	NST-500NM 特別仕様 NST-100NM
ねじ締付試験機	㈱美晴工商	SS-200M-4
ヤング率/内部摩擦測定装置	日本メカトロン(株)	MS-FymeMK II
引張・剪断試験機	カトーテック(株)	KES FB1
緩衝材用衝擊試験機	Lansmont	クッションテスターModel23C
高温マイクロビッカース硬度計	(株)ニコン	QM-2型
高温炉付ビッカース硬度計	㈱明石製作所	AVK-HF
高速衡擊試験機	㈱島津製作所	EHF-USH-20L形
高分子材料クリープ試験機	㈱オリエンテック	CP6-L-250
自動制御型衝擊試験装置	ボクスイ・ブラウン(株)	Model-152
新素材疲労試験機	㈱東京衡機製造所	PSC-1000A
迅速摩耗試験機	ジェイティトーシ(株)	OAT-U型
精密ねじり試験機	㈱島津製作所	TTM-3KN.mA型
静的・動的圧力測定装置	スイス・キスラー	9265B型、9443B型、9255B型、9272型他
大型貨物圧縮試験機	㈱島津製作所	AG-250kNES形
二軸引張試験機	㈱島津製作所	2AT-5000 形
熱間加工再現試験装置	富士電波工機㈱	THERMECMASTOR-Z FTZ-203A
箱圧縮試験機	㈱島津製作所	AG-100KNI MI 型
微小部X線応力測定装置	理学電機㈱	PSPC/RSF システム
摩擦摩耗試験機(ピン・オン・ディスク型)	神鋼造機株	SZ-FT-93B
摩擦摩耗試験機(往復摺動型)	神鋼造機㈱	SZ-FT-93A
溶射ロボット	エアロプラスマ(株)	IOMATEII
溶射用集塵機付防音室	エアロプラスマ(株)	20F8

電機計測機器

機器名称	メーカー名	型 式
EMC(イミュニティ/エミッション)評価・解析装置	日本測器	放射イミュニティ試験装置 TS5000 他
EM I 総合測定システム	㈱アドバンテスト	ESS
EM I 測定補助装置	㈱EMCジャパン	TEMS-EMI-RE 他
EM I 対策システム	日本ヒューレットパッカード㈱	8546A
イオンミリング膜厚測定装置	㈱日立製作所	E3200
イミュニティ自動計測システム	松下インターテクノ(株)	MH-5250
インパルス電圧発生装置	東京変圧器㈱	200KV
インピーダンス・アナライザ	日本ヒューレットパッカード㈱	4291A
スペクトラム・アナライザ	㈱アドバンテスト	R3371A
デジタルオシロスコープ	日本テクトロニクス	デジタル・フォスファ・オシロスコープ
		DPO7354 他
マイクロ波デバイス測定システム	関東電子応用開発	H15-0088 用治具
マイクロ波ネットワーク・アナライザ・システム	アジレント・テクノロジー(株)	E8361A,85070D
マイクロ波分解装置	マイルストーンゼネラル	ETHOS TC
マイクロ波放射EMI測定拡張システム	ローデ&シュワルツ	EMI レシーバ ESP17 他

機器名称	メ ー カ ー 名	型式
ワイドダイナミックレンジ電気特性評価システム	㈱東陽テクニカ	8310型 他
可変周波数電源	㈱エヌエフ回路設計ブロック	8461
基板ノイズ測定器	(株)ベルサイエンス	R3361(T·G 付)他
交流高圧発生装置	東京変圧器㈱	100kV-20KVA
雑音耐力測定システム	㈱ノイズ研究所	EMC-8000
磁気特性測定装置	理研電子(株)	BHV-50H
精密インピーダンス測定器	クォード・テック	GR-1620-A
精密直流抵抗測定器	TEGAM	242D
走査型振動電極システム	北斗電工㈱	HV-301型
超伝導赤外線センサー特性測定装置	国華電機㈱	K-480317
直流・交流電圧精密測定器	(株)フルーク	5700A
電気抵抗測定システム	㈱神戸製鋼所	JMTR-4/300K
電子材料特性自動測定装置	横河ヒューレットパッカード㈱	ECS-4061
電流比較型ブリッジ	双信電機㈱	1210-A
部分放電自動計測装置	三菱電線工業㈱	QM-3A
妨害電力測定装置	(株)EMCジャパン	PS5000他
誘電体測定システム	ソーラトロン	129655-S
雷サージ試験装置	ノイズ研究所、NF回路設計ブロック	LSS-F02C3,LSS-720B,ONS-40429-3W
ブローオフ粉体帯電量測定装置	京セラケミカル	TB-203

環境試験機器

少农少兄时心时代的交合的		
機 器 名 称	メーカー名	型 式
キセノンウエザーメータ	スガ試験機構	SC-750WA
キセノンウエザーメータ	スガ試験機株	WEL-75X-LHP
キャス試験機・大型キャス試験機	スガ試験機株	CASSER-ISO-3、CASSER-16L-ISO
サンシャインウエザーメータ	スガ試験機株	WEL-300
メタルハライド式耐候性試験装置	岩崎電気	アイスーパーUV テスターSUV-W161
高照度キセノン耐候性試験装置	スガ試験機株	スーパーキセノンウェザーメーター
		SX2D-75
小型振動試験機	I MV(株)	VS-300-2 型
大型貨物振動試験機	㈱鷲宮製作所	VTM-2型
大型環境室集中監視制御装置	東洋製作所	
大型恒温恒湿槽	タバイエスペック(株)	TBE-3
蓄積疲労振動試験システム	I MV	K2 FATIGUE
低温型恒温恒湿槽	タバイエスペック(株)	PSL-2SP
低湿型恒温恒湿槽	タバイエスペック(株)	PDL-3S
低湿度型恒温恒湿器	タバイエスペック(株)	PDL-4SP
複合サイクル試験機	スガ試験機㈱	CYP-90
複合サイクル腐食試験機	スガ試験機株	CCT-1L
包装貨物用振動試験装置	株 振研	G-5230NS 型
輸送環境用恒温恒湿槽	タバイエスペック(株)	TBE-3 HW2GEF
冷熱衝撃試験装置	エスペック	TSA-71S-W

加工·製造機器

機器名称	メーカー名	型式
ACサーボ順送プレス装置	コマツ産機他	ハイブリットAC サーボリングプレス
		H1F200 他
NC旋盤	オークマ(株)	LB15 II CX500
NC放電加工機	㈱ソディック	A30R+MARK20C
アンバランスド・マグネトロンスパッタ装置	㈱神戸製鋼所	UBMS202型
イオンビームエッチング装置	㈱日新電機	NIS-250-E
イオンプレーティング装置	日新電機㈱	MAV26S-3S 型
ウェハー切断機	㈱東京精密	A-WD-10A
エアロプラスマ溶射装置	㈱エアロプラスマ	APS7050
スクリュ・プリプラ式射出圧縮成形機	㈱ソディック	ツパール TR8052
タッピングマシン	ファナック	ROBODRILLα-T14iFa
プラズマスパッタ装置	NEC	Teorode Sputtering System
マグネトロンスパッタ装置	㈱大阪真空機器製作所	MSR303S
リアクティブイオンエッチング装置	㈱サムコインターナショナル研究所	RIE-10N型(他 2)

	<u> </u>	<u>r</u>
機 器 名 称	メーカー名	型 式
レーザーアブレーション製膜装置	日本真空技術㈱	ULA-1000、ELA-102 他
ワークショップ汎用工作機械(立型マシニングセンタ)	森精機	DuraVertical5060
円筒研削盤	(株)ツガミ	G18SA
横型フライス盤	大阪機工㈱	MH-2P
簡易NCワイヤカット		BF275
	㈱ソディック	
金属粉末ラピッドプロトタイピング装置	EOS	EOSINT-M250
高エネルギープラズマ溶射装置	三井物産工作機械㈱	OX-18CPS37 VMF-I-13
高周波誘導加熱式真空溶解装置	株理研社	11111 1 10
高周波誘導溶解炉	富士電波工機㈱	FTH-100-3M, FBT-100, FBT-10 FVPM-10
高精度フォトマスク作製装置	HIMT	DWL-66FS レーザー直接描画装置
高精度フォトリソグラフィー装置	カールズース	SUSS MA4IR(他 4)
高密度プラズマアシスト薄膜作製装置	神港精機㈱	ACV-1060
高密度プラズマエッチング装置	サムコ(株)	Model:RIE-101iPSS
混練・押出試験装置	(株東洋精機製作所	30C150型
試料研削加工装置	ヨコハマセラミックス(株)	YCC-H1
時間分解超高感度マルチ測光器	大塚電子(株)	IMUC-7000G
自動型万能深絞り試験機	ジェイティトーシ(株)	SAS-200D
縦型フライス盤	大阪機工㈱	らくらくミル 2V
水晶圧電式切削動力測定処理システム	スイス・キスラ	9257A
精密CNCフライス盤	牧野フライス精機㈱	MS-40
精密プラスチック射出成形機	株名機製作所	M50AII-DM
精密旋盤	(株)昌運工作所	ST5
多機能真空蒸着装置	理研	RVC-2-ICP
多機能溶解炉	フルテック	F-UP-1700V
多層膜製造装置	東洋精機製作所	三層フィルム製造装置
大気圧プラズマ処理装置	ヒラノ光音㈱	ATM-P-250
段ボール箱設計・試作加工機	東京デックス(株)	DX2200
超高真空成膜装置	(株)ユニソク	USM-601F型
超精密曲面加工機	豊田工機㈱	AHN60-3D
電気アーク溶射装置	英国メタライゼーンョン	アーク 234 型
電極薄膜作製装置	㈱理研社	RSC-3ERD
二軸押出試験機	東洋精機製作所	2D25WH
熱間静水圧加圧装置	㈱神戸製鋼所	SYSTEM40
半導体熱処理装置	光洋リンドバーグ(株)	274A
汎用旋盤	(株)瀧澤鉄工所	TAC-560X1000
非消耗電極型アーク溶解炉	㈱理研社	ACM-01
分割電極型複合プラズマシステム装置	日新電機㈱	NIS-250-L
平面研削盤	岡本工作機械製作所㈱	PSG-52DX
放電プラズマ焼結機	住友石炭鉱業㈱	SPS-1020
立体マシニングセンター	東芝機械㈱	ASV650(T)
流動層金属熱処理炉	東レエンジニアリング(株)	HT-2050A-0918
両面マスクアライナ	ユニオン光学(株)	PEM-800
冷温間成形油圧プレス	アサイ産業(株)	EFP-150H(特殊)
冷間等方圧プレス装置	㈱日機装	CP-8-20-60
ファイバーレーザ微細加工装置	赤澤機械	YLR-200
半導体デバイス製造用スパッタ装置	クライオバック	マグネトロンスパッタ装置 CR-SP-3NN
微細複合加工装置	Smaltec	EM203-HS

その他機器

機器名称	メーカー名	型式
5 検体全自動真密度測定装置	ユアサアイオニクス(株)	PPYC-5E
CAD/CAM/CAE/CATシステム	㈱電通国際情報サービス	HP-Vectra VL6/333s7 M4300 CD-LAN
DNAシーケンサー	ベックマン	GenomeLab GeXP
オゾン発生・反応システム	大同ほくさん(株)	DH-098-0018
コンピュータシミュレーション装置	㈱帝人システムテクノロジー	SMC2-12
サーマルマネキン	京都電子工業㈱	女子 13 分割立位体
ハイブリダイゼーションシステム	㈱奈良機械製作所	NHS-0A型

	メーカー名	型式
プラスチック製品分野向け	コンパック	WorkstationAP550他
CAD/CAE用パソコンシステム	. //	Worksatton in 300 E
レーザーゼータ電位計システム	大塚電子(株)	ELS-8000HW
レーザー粒子分析計	エアロメトリクス	1D-PDPA/RSA
非線形動解析システム	LSTC	ソルバーLS-DYNA, プリポストJVISION
流動性評価装置	東洋精機製作所	キャピログラフ 1D
大型積分球測定装置	スペクトラ・コープ	2m 積分球
電池評価装置	北斗電工	HJ-1001SD8
非破壊検査用X線CTシステム	東芝 I Tコントロールシステム	TOSCANER-32300µFD
分光測色計	日本電色工業	SE-OF-6000型(ファイバータイプ)
液相粘弹性測定装置	㈱レオロジ	MR-500
吸音率測定システム	ブリュエル・ケアー	3551型 他
強磁場発生装置	(株)神戸製鋼所	JMTD-10T100M
空気・水源供給システム	ヒラカワガイダム(株)	OSP-37E6WII 他
広帯域粒子径分布測定装置	㈱堀場製作所	LA-920,LB-550、計測制御部
高精度パターンジェネレータ	日本精工㈱	T2-320
高速測色計	㈱日立製作所	C-2000 S型
細孔分布測定装置	ユアサアイオニクス(株)	AUTOSORB-1-C2
酸素発生装置	大同ほくさん(株)	OX-18CPS37
糸むら試験機	ツェルベガーウスター(株)	ウスターテスタータイプ3
自動表面自由エネルギー計	協和界面科学㈱	CA-VE
色彩計測装置	ヤマト科学(株)	MCPD-100
人間工学生体計測処理システム	ニホンサンテク(株)	MaP1058P, MaP1058S, MaP1058N,
		MaP1058Ex
垂直入射吸音率測定システム	ブリュエル・ケアー	P-PULSE 音率計測システム
水冷式燃燒試験炉	中外炉工業㈱	横置き鋼鉄製炉筒ボイラ型
制御系解析装置	マスワーク	MATLAB
生体反応測定システム	日本電気三栄㈱	DP1100A 他
走査型スクラッチテスタ	スイスCSEM	AMI
熱源供給システム	ヒラカワガイダム(株)	KAT-250G 他
熱衝擊試験用赤外線導入加熱装置	(株)サーモ理工	TH-4K
熱伝導率測定装置	アルバック理工㈱	TC-7000H/SBB-2
熱分布解析システム	日本電気三栄㈱	TH3102
噴霧試験装置	コロナ(株)	CHA-1
変角測色計	スガ試験機㈱	VC-2
粒度分布測定装置	日機装㈱	9230

(3) 沿 革

当産業技術総合研究所は、府内工業界特に中小企業の技術指導とそのレベルアップを目的として、昭和4年4月大阪 市西区江之子島に創設され、以下の経過を経て現在に至っている。

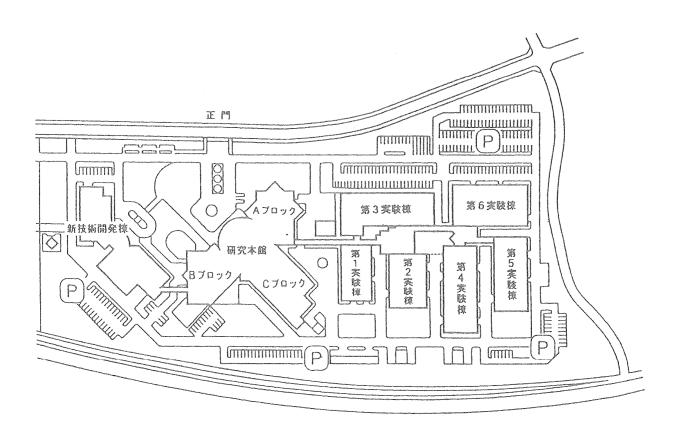
なお、平成24年4月には、地方独立行政法人に移行した。

- 昭和 4年 4月 大阪市西区江之子島の旧大阪府庁舎に大阪府工業奨励館を創設。
- 同 7年 4月 大阪府金属材料研究所(所長:東北帝国大学総長理学博士本多光太郎)を併設。
- 同 11月 天皇陛下が産業奨励のため来館される。
- 同 9年 9月 泉北郡大津町(現泉大津市)に織物試験部大津分館を新設。
- 同 11年 4月 大阪府金属材料研究所を併合。
- 同 13年 3月 付属工業会館を新設し、工業図書館を併設。
- 同 14年 4月 堺市から市立工業研究所の寄付を受け、これを拡充し堺分館とする。
- 同 17年 4月 大津分館を独立させ、大阪繊維工業指導所を創設。
- 同 20年 3月 戦災で、大阪府工業奨励館の本館、附属工場その他を焼失。
- 同 23年 2月 工業奨励館復興促進委員会を設置し、復興に着手。
- 同 27年 4月 大阪府工業奨励館に、大阪科学技術館を併合。
- 同 7月 大阪府工業奨励館を、大阪府立工業奨励館に名称変更。
- 同 8月 大阪繊維工業指導所を、大阪府立繊維工業指導所に名称変更。
- 同 31年 3月 泉佐野市に、大阪府立繊維工業指導所の泉佐野分所を設置。
- 同 10月 天皇、皇后両陛下が産業ご視察のため来館される。
- 同 35年 12月 堺市に、大阪府立繊維工業指導所の堺分所を設置。
- 同 37年 6月 大阪市東淀川区に、大阪府立繊維工業指導所の大阪分所を設置。
- 同 39年 4月 布施市(現東大阪市)から市立工芸指導所の移管を受け、大阪府立工業奨励館東大阪分館とする。
- 同 41年 3月 大阪府立繊維工業指導所の泉大津本所を全面改築。
- 同 47年 5月 吹田市に、皮革試験所を設置。
- 同 48年 4月 大阪府立工業奨励館を大阪府立工業技術研究所に、大阪府立繊維工業指導所を大阪府立繊維技術 研究所に名称変更。
- 同 50年 12月 両研究所ともに、課制を廃止し、研究室制を敷く。
- 同 58年 1月 大阪府立繊維技術研究所の泉佐野分所を全面改築。
- 同 62年 11月 両研究所を再編整備し、大阪府立産業技術総合研究所となる。 同時にデザイン関係部門は、大阪府立産業デザイン研究センターに移管。
- 同 63年 4月 大阪分所を廃止し、その業務(ニット部門)を泉大津本所に移管。
- 平成 元年 4月 組織改正を行い、3本所7部、2技術センター、1試験所とする。
- 同 4年 12月 大阪繊維リソースセンター内に府有施設を設置。
- 同 8年 4月 大阪本所、泉大津本所、東大阪本所、堺技術センターを統合し、和泉市あゆみ野に新研究所を 建設して移転。同時に組織改正を行い、研究室制を廃してグループ制を敷き、7部、1技術セ ンター、1試験所とする。
- 同 9年 10月 天皇、皇后両陛下がご視察のため来所される。
- 同 16年 4月 専門部の組織改正を行い、グループを中規模組織の10専門系からなる3部1試験所とする。
- 同 20年 3月 泉佐野技術センターを廃止し、その業務を本所に移管。
- 同 24年 4月 地方独立行政法人に移行

(4) 土地及び建物

所在地及び土地面積

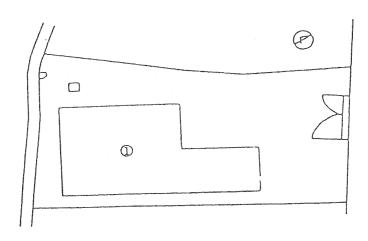
総計: 82,551.18m²


産業技術総合研究所 皮 革 試 験 所 和泉市あゆみ野 2 丁目 7番1号 吹田市岸部中1丁目 18番13号 81, 840. ⁴³m² 710. ⁷⁵m²

建物

総計:延37,458.61m2

産業技術総合研究所


1	研究本館	延	$21,448.{}^{01}{\rm m}^2$	6	第4実験棟	延	$1,440.{}^{00}{ m m}^{2}$
2	新技術開発棟	延	$4,289.^{98}\text{m}^{2}$	7	第5実験棟	延	$1,242.~^{37}\mathrm{m}^{2}$
3	第1実験棟	延	$1,172.\ ^{15}m^2$	8	第6実験棟	延	$2,664.\ ^{01}m^{2}$
4	第2実験棟	延	1, 101. 48 m 2		その他		1, 665. 40 m 2
(5)	第3実験棟	延	$2,028.^{10}\mathrm{m}^2$		計		$37,051.$ 50 m 2

皮革試験所

① 管理・研究棟(1 部 2 階建) 延 398. 11 m² その他 9. 00 m²

計 407. ¹¹m²

平成24年度大阪府立産業技術総合研究所業務年報

平成25年11月発行

発行所 地方独立行政法人

大阪府立産業技術総合研究所

和泉市あゆみ野2丁目7番1号

TEL 0725 (51) 2517

FAX 0725 (51) 2522